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Abstract

The aim of this dissertation is to give explicit descriptions of the set of proper holomorphic
mappings between two complex manifolds with reasonable restrictions on the domain and
target spaces. Without any restrictions, this problem is intractable even when posed for do-
mains in �n. We give partial results for special classes of manifolds. We study, broadly, two
types of structure results:
Descriptive. The first result of this thesis is a structure theorem for finite proper holomorphic
mappings between products of connected, hyperbolic open subsets of compact Riemann sur-
faces. A special case of our result follows from the techniques used in a classical result due
to Remmert and Stein, adapted to the above setting. However, the presence of factors that
have no boundary or boundaries that consist of a discrete set of points necessitates the use of
techniques that are quite divergent from those used by Remmert and Stein. We make use of
a finiteness theorem of Imayoshi to deal with these factors.
Rigidity. A famous theorem of H. Alexander proves the non-existence of non-injective
proper holomorphic self-maps of the unit ball in �n, n > 1. Several extensions of this
result for various classes of domains have been established since the appearance of Alexan-
der’s result, and it is conjectured that the result is true for all bounded domains in �n, n > 1,
whose boundary is C2-smooth. This conjecture is still very far from being settled. Our first
rigidity result establishes the non-existence of non-injective proper holomorphic self-maps
of bounded, balanced pseudoconvex domains of finite type (in the sense of D’Angelo) in
�n, n > 1. This generalizes a result in �2, by Coupet, Pan and Sukhov, to higher dimensions.
As in Coupet–Pan–Sukhov, the aforementioned domains need not have real-analytic bound-
aries. However, in higher dimensions, several aspects of their argument do not work. Instead,
we exploit the circular symmetry and a recent result in complex dynamics by Opshtein.
Our next rigidity result is for bounded symmetric domains. We prove that a proper holomor-
phic map between two non-planar bounded symmetric domains of the same dimension, one
of them being irreducible, is a biholomorphism. Our methods allow us to give a single, all-
encompassing argument that unifies the various special cases in which this result is known.
Furthermore, our proof of this result does not rely on the fine structure (in the sense of Wolf
et al.) of bounded symmetric domains. Thus, we are able to apply our techniques to more
general classes of domains. We illustrate this by proving a rigidity result for certain convex
balanced domains whose automorphism groups are assumed to only be non-compact. For
bounded symmetric domains, our key tool is that of Jordan triple systems, which is used to
describe the boundary geometry.
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1 Introduction

In this dissertation, we present some results that, broadly speaking, fall into the category
of structure results for proper holomorphic mappings. Recall that a continuous mapping
f : X → Y between topological spaces X and Y is said to be proper if f −1(K ) is compact
whenever K ⊂ Y is compact. A basic example: the proper holomorphic self-mappings of
the unit disk � are precisely the finite Blaschke products. Proper holomorphic mappings are
interesting from a number of perspectives. For example:

1. From the perspective of being holomorphic. Holomorphicity confers such rigidity
on a proper holomorphic map that, in many circumstances, it is not much unlike a
biholomorphism (see Section 2.1, where we give a summary of the basic properties of
proper holomorphic mappings). In fact, one of the central themes of this dissertation is
motivated by the conjectured meta-principle that if a domain is sufficiently “nice”, then
the set of proper holomorphic self-maps and the set of automorphisms of the domain
coincide.

2. From the perspective of geometry. Compact manifolds are, in general, easier to study
than non-compact ones. Loosely speaking, the number of holomorphic maps between
pairs of complex manifolds is — in general — small. This principle has been estab-
lished in diverse ways in the literature, with the compactness of the underlying mani-
folds playing a crucial part. No such principles exist for the full class of holomorphic
maps between non-compact manifolds. When studying non-compact manifolds (like
domains in �n), the condition of properness often serves as a substitute for compact-
ness. For instance, proper holomorphic mappings between domains are finite mappings
(i.e., the inverse image of a point is a finite set), which is reminiscent of the behaviour
at regular values of the inverse images of smooth mappings of compact manifolds of
the same dimension; see Result 2.1.2.

A precise description (such as what we have for the unit disk) for the set of all proper
holomorphic mappings between two complex manifolds is, in general, very hard to ob-
tain. The purpose of our work has been to derive such descriptions for certain classes of
domains/manifolds. We present two types of structure results for proper holomorphic map-
pings. The first deals with manifolds that are products of certain Riemann surfaces. We give
the structure of a proper holomorphic between two such manifolds in terms of the proper
holomorphic mappings between the individual factors of the two manifolds. The second type
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1 Introduction

of results are what may be called rigidity results. We show that for certain reasonably “nice”
domains, the class of proper holomorphic mappings and biholomorphisms coincide.

We shall have a discussion of these results in Section 1.5. Before this, however, we shall
briefly survey some of the important results in the literature that are connected with these two
themes.

1.1 Early results

As we had remarked in the previous section, it is, in general, very hard to give a description of
the set of all proper holomorphic maps between two given complex manifolds. We have such
a description for proper holomorphic self-maps of the unit disk � ⊂ �. The set of all proper
holomorphic self-maps of � are precisely the finite Blaschke products. One of the simplest
classes of domains in �n is the class of products of planar domains. It is, therefore, natural
to ask whether one can obtain a precise description of the proper holomorphic self-maps of
the unit polydisk�n, n > 1. The following theorem is a consequence of Cartan’s uniqueness
theorem, and gives the precise description of the automorphisms of �n.

Theorem 1.1.1. For each f := ( f1, . . . , fn) ∈ Aut(�n), there exists a permutation p of
{1, . . . ,n} such that each f j , j = 1, . . . ,n, is of the form f j (zp( j)). Consequently, each
f j : �→ � is an automorphism.

The above result gives some hope of obtaining a structure result for proper holomorphic
mappings between products of planar domains. The following theorem due to Remmert
and Stein gives the precise structure of a proper holomorphic map between certain product
domains.

Theorem 1.1.2 (Remmert and Stein [RS60]). Let D = D1 × D2 × · · · × Dn and W =

W1 × W2 × · · · × Wn be such that each D j ⊆ � is a domain with � \ D j having non-
empty interior, and each W j ⊆ � is a bounded domain. Let f = ( f1, . . . , fn) be a proper
holomorphic map from D to W. Then, each f j , j = 1, . . . ,n, is of the form f j (zp( j)), where
p is a permutation of {1, . . . ,n}.

Remark 1.1.3. The proof of this result in the case n = 2 was given by Remmert and Stein
([RS60, Satz 12]). Their proof uses Rado’s theorem. The proof of the general case requires a
generalization of Rado’s theorem, but all other aspects of Remmert and Stein’s proof remain
unchanged. For a proof of the above result and other related results, refer to [Nar71, pp. 71–
78].

Another result on the theme of mappings between product spaces is the following theorem
of Peters which generalizes a well-known result by Cartan [Car74]:
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1.2 Boundary regularity of proper holomorphic mappings

Theorem 1.1.4 (Peters [Pet74]). Let X and Y be hyperbolic complex spaces. Then the natural
injection Aut(X ) × Aut(Y ) → Aut(X × Y ) induces an isomorphism

Aut0(X ) × Aut0(Y ) � Aut0(X × Y ).

Here Aut0(X ) denotes the connected component of the identity element of Aut(X ).

To the best of our knowledge, there is no analogue of the above result for proper holo-
morphic maps in the literature, except for Theorem 1.1.2 (and a small technical improvement
thereof in [Nar71, p. 77]). One would have expected a similar result with the planar domains
of Theorem 1.1.2 replaced by hyperbolic Riemann surfaces. However, it is far from clear
whether the methods seen in the proofs of either of the above results are alone decisive in
proving the hoped-for generalization. We investigated the role of (Kobayashi) hyperbolicity
in the Remmert–Stein theorem and discovered that the key ingredient that is needed to ex-
tend the Remmert–Stein theorem to hyperbolic Riemann surfaces is the finiteness theorem
of Imayoshi [Ima83]. A precise statement and a brief discussion of our extension of the
Remmert–Stein theorem is given in Section 1.5.

1.2 Boundary regularity of proper holomorphic
mappings

Before we can present a survey of results related to our second theme (i.e., rigidity results),
we must first survey some results on the boundary regularity of proper holomorphic map-
pings. The reason for this will become apparent in Section 1.3, but we mention here that
almost all known rigidity results (including ours) rely crucially on the extension of the proper
holomorphic mapping under consideration up to or beyond the boundary. Our survey will be
brief. The literature on this subject is truly enormous. This brief survey relies upon a part of
the very comprehensive survey [For93].

Throughout this chapter, whenever we use use the word “smooth”, it will refer to C∞-
smoothness unless specified otherwise.

The following theorem of Painlevé is one of the earliest results on boundary regularity.

Theorem 1.2.1 (Painlevé). Any biholomorphic map of a bounded simply connected domain
with smooth boundary onto the unit disk extends smoothly up to the boundary.

Almost a 100 years after Painlevé’s result, Fefferman proved the following theorem which
is a far-reaching extension of Theorem 1.2.1.

Theorem 1.2.2 (Fefferman [Fef74]). Every biholomorphic mapping between two bounded,
strictly pseudoconvex domains with smooth boundaries in �n extends to a smooth diffeomor-
phism of their closures.
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1 Introduction

Fefferman’s theorem stimulated intense activity on the problem of smooth extension to the
boundary of biholomorphisms (and later proper holomorphic mappings) between bounded
domains with C∞-smooth boundaries. From the very beginning, there were efforts to sim-
plify Fefferman’s proof in such a way that ways to extend his result to weakly pseudoconvex
domains would become evident. For instance, it was found by Webster [Web79] that ex-
tendability of biholomorphic mappings would follow from a few crucial properties of the
Bergman kernel. A little later, a precise sufficient condition, known as Condition R, was
formulated by Bell and Ligocka [BL80]. In what follows, D ⊂ �n is a bounded domain,
and B(D) := O(D) ∩ L2(D) is the space of holomorphic functions on D that are square-
integrable with respect to the Lebesgue measure, i.e., the Bergman space of D. It is an
elementary fact that B(D) is a closed subspace of L2(D). The orthogonal projection onto
B(D), P : L2(D) → B(D), is known as the Bergman projection. In the terminology of Bell–
Ligocka, D is said to satisfy Condition R if P is globally regular, i.e., P maps the subspace
C∞(D) ⊂ L2(D) into itself.

We now state the generalization of Fefferman’s theorem given by Bell and Ligocka.

Theorem 1.2.3 (Bell and Ligocka [BL80]). Let D and D′ be bounded domains with smooth
boundaries in �n that satisfy Condition R. Then every biholomorphic map of D onto D′

extends smoothly to the closure of D.

The methods deployed by Bell–Ligocka, apart from being substantially simpler than the
methods of Fefferman, have the feature that many aspects can also be applied to proper
holomorphic mappings. This motivated a very large number of results, including results on
local regularity and C-R regularity. Since this aspect of the study of proper holomorphic
maps is the most distant from our work — and the associated literature is truly enormous —
we shall only survey some of the highlights.

The following result by Bell and Catlin, and independently by Diederich and Fornæss, is
the analogue of Theorem 1.2.3 for proper holomorphic mappings.

Theorem 1.2.4 ([Bell–Catlin [BC82], Diederich–Fornæss [DF82]). Let D and D′ be bounded
pseudoconvex domains with smooth boundaries in �n , and let D satisfy Condition R. Then
every proper holomorphic map of D onto D′ extends smoothly to the closure of D.

As in Theorem 1.2.3, the pseudoconvexity hypothesis in the above theorem can be dropped
if both D and D′ are assumed to satisfy Condition R [Bel84b].

The above results prompted the question of whether every bounded domain with smooth
boundary satisfies Condition R. This was shown to be false by Barrett [Bar84]. The most
general method available to verify that a given domain satisfies Condition R involves check-
ing whether the domain admits a subelliptic estimate at every boundary point (see [DK99]
for details). The existence of subelliptic estimates at every boundary point of a domain is
a sufficient condition for the domain to satisfy Condition R, but it is not a necessary condi-
tion. The following result of Catlin gives a necessary and sufficient condition for a smoothly
bounded pseudoconvex domain to have a subelliptic estimate at a given boundary point.

4



1.2 Boundary regularity of proper holomorphic mappings

Theorem 1.2.5 (Catlin [Cat87]). Let D ⊂ �n be a bounded pseudoconvex domain with
smooth boundary. There is a subelliptic estimate at a boundary point p ∈ ∂D if and only if p
is a point of (D’Angelo) finite type.

We shall define rigorously the notion of finite type, in the sense of D’Angelo, in Chapter 4.
In particular, the above the theorem shows that all the extension results so far described

are applicable to bounded pseudoconvex domains with smooth boundaries that are also of
finite type. On the other hand, the following result by Boas and Straube shows that there
is a natural class of domains, whose boundaries need not be of finite type, that also satisfy
Condition R.

Theorem 1.2.6 (Boas and Straube [BS91]). Let D ⊂ �n be a bounded pseudoconvex domain
with smooth boundary that admits a smooth defining function that is plurisubharmonic at the
boundary of D. Then D satisfies Condition R. In particular, any convex domain with smooth
boundary satisfies Condition R.

One can also exploit symmetries to construct many examples of domains that satisfy Con-
dition R but do not admit subelliptic estimates at all boundary points. The most general
symmetry condition that one can impose in order to ensure that Condition R is satisfied is to
require the domain to have transverse symmetries.

Definition 1.2.7. Let D ⊂ �n be a bounded domain with smooth boundary. We say that
D has transverse symmetries if there exists a Lie subgroup G ⊂ Aut(D) (note that, as D is
bounded, Aut(D) is a (real) Lie group by a classical result of Cartan) such that the natural
action ψ : G × D → D, (g, z) 7→ g(z) satisfies the following conditions:

(i) the group action ψ can be extended to a smooth action on D;

(ii) for each z0 ∈ ∂D, the image of the tangent map (ψz0 )∗ : TeG → Tz0 (∂D) is not a subset
of T�z0

(∂D)(:= Tz0 (∂D) ∩ iTz0 (∂D)).

Furthermore, if the action ψ can be extended to a smooth action on a neighbourhood V ⊂
Aut(D) × �n of G × D such that it is holomorphic in the z variable, then we say that D has
transverse symmetries extending beyond the boundary.

Barrett [Bar82] studied the above notion and proved that any domain that has transverse
symmetries automatically satisfies Condition R. In particular, this proves that all bounded
Reinhardt domains with smooth boundaries satisfy condition R (note that pseudoconvexity
is not assumed). Furthermore, Barrett has shown that if a domain has transverse symmetries
extending beyond the boundary, then one can also extend proper holomorphic mappings
beyond the boundary. More precisely, we have the following:

Theorem 1.2.8 (Barrett [Bar82]). Let D and D′ be bounded domains with smooth bound-
aries that have transverse symmetries extending beyond the boundary. Then any proper
holomorphic mapping F : D → D′ extends to a holomorphic mapping in a neighbourhood
of D.

5



1 Introduction

All the results surveyed so far exploit the Bergman kernel in their proofs. All of them
also assume that the domains under consideration have smooth boundaries. A key tool that
is used in many of the proofs is the transformation formula for the Bergman kernel and
projection (Result 2.2.2). However, this transformation formula is valid for all bounded
domains regardless of boundary smoothness. Thus, the machinery of the Bergman kernel
and Bergman projection can be deployed even in the absence of boundary smoothness to
extend proper holomorphic mappings. The following result of Bell illustrates this theme.

Theorem 1.2.9 (Bell [Bel82b]). Let D1 and D2 be bounded circular domains �n that contain
the origin. If f : D1 → D2 is a proper holomorphic mapping such that f −1{0} = {0}, then
f is a polynomial mapping.

The methods used in the proof of the above theorem can be used to prove a general meta-
result for the extension of proper holomorphic mappings between circular domains; see Re-
sult 2.2.3. A consequence of this meta-theorem is used in all of our rigidity results, and it is
presented in Section 2.2.

We conclude this section with a brief discussion of the reflection principle. As the reflec-
tion principle is not used anywhere in our work, but is only important in the present context
to set the stage for our discussion of rigidity results, we shall be very brief and we will not
give precise statements of results. The interested reader can refer to Section 2 of [For93] for
the early results on the reflection principle, and to [DP09] for the latest developments.

Let D, D′ be bounded domains in �n whose boundaries are real-analytic, and let f : D →
D′ be a proper holomorphic mapping. If n = 1, one can extend f holomorphically beyond the
boundary of D by applying the classical reflection principle on small portions of the bound-
ary. The analogous question of whether f extends holomorphically beyond the boundary of
D if n > 1 remains open. The reflection principle in higher dimensions was introduced by
Pinchuk in [Pin75]. It has been refined by several authors, and significant progress has been
made in the resolution of the above question by using the reflection principle. For instance,
the answer to the above question is “Yes,” if D and D′ are in �2 (see [DP95]). The answer
is also “Yes” in higher dimensions, if D and D′ are both assumed to be pseudoconvex (see
[DF88]). The latest result of Diederich and Pinchuk [DP03] in fact gives a positive answer,
without any additional hypothesis on ∂D, ∂D′, assuming only that f extends continuously
to ∂D.

This concludes our survey of results on boundary regularity of proper holomorphic map-
pings. We are now in a position to survey rigidity results of proper holomorphic mappings of
domains whose boundaries have some smoothness.

1.3 The Alexander phenomenon

The unit ball in �n, denoted by �n, is a very special domain from the perspective of function
theory. It has various nice attributes: it has a smooth real-analytic boundary, it is pseudo-
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1.3 The Alexander phenomenon

convex and of finite type, it is a bounded symmetric domain and hence homogeneous, it is
balanced and convex, it is Reinhardt, etc. The precise automorphism group of �n has been
known since the time of Poincaré. When n = 1, one also knows that the finite Blaschke
products are the only proper holomorphic self-maps. In contrast, when n ≥ 2, it was not
known for a long time whether there is even one non-injective proper holomorphic self-map
of�n! The non-existence of non-trivial proper holomorphic self-mappings of�n,n ≥ 2, was
proved by Alexander in 1977.

Theorem 1.3.1 (Alexander [Ale77]). Any proper holomorphic self-mapping of �n, n > 1, is
an automorphism.

Slightly before the work of Alexander, Pinchuk had established the following:

Theorem 1.3.2 (Pinchuk [Pin74]). Let D1, D2 ⊂ �
n, n > 1, be bounded strictly pseudocon-

vex domains, and let f : D1 → D2 be a proper holomorphic mapping. If f extends to a C1

mapping on D1, then f is a local biholomorphism. Furthermore, if D1 = D2, then f is an
automorphism.

As a part of the proof, Pinchuk established the following:

Theorem 1.3.3. Let D ⊂ �n, n > 1, be a bounded domain with C2-smooth boundary,
and let f : D → D be a proper holomorphic mapping that is unbranched (i.e., a local
biholomorphism). If f extends to a C1 mapping on D, then f is an automorphism of D.

The above result is of cardinal importance in obtaining Alexander-type theorems when the
boundary of the domain under consideration has some smoothness. It is the last step in the
proof of a number of such theorems. The results surveyed in Section 1.2 show that the ex-
tension hypothesis in Theorems 1.3.2 and 1.3.3 are automatically satisfied for a large class of
domains. In particular, an Alexander-type theorem holds true for all bounded strictly pseudo-
convex domains with smooth boundary. The following example, discovered independently
by both Pinchuk and Siu, shows that one cannot expect such a result to be true, in general,
when D1 , D2.

Example 1.3.4. Let

D1 =

{
(z, w) ∈ �2 : |z |4 +

1
|z |4

+ |w |2 < 3
}

D2 =

{
(z, w) ∈ �2 : |z |2 +

1
|z |2

+ |w |2 < 3
}
,

and let f : D1 → D2 be given by f (z, w) = (z2, w). Note that f is a 2-to-1 covering
projection. It is also easy to see that both D1 and D2 are strictly pseudoconvex.

7



1 Introduction

The results of Alexander and Pinchuk inspired a lot of results of a similar nature; Section 3
of the survey article [For93] presents some of these. These results have in their hypotheses
some combination of the various attributes enjoyed by �n listed in the beginning of this
section. We will now state a few related results on this theme, concentrating primarily on
results that were proved after the aforementioned survey article was published.

The following result by Bedford and Bell proves an Alexander-type theorem for a large
class of weakly pseudoconvex domains. Their methodology involves stratifying the boundary
by means of a function τ, which we shall discuss in detail in Section 4.2. This function will
play a central role in one of our rigidity results (Theorem 4.1.1).

Theorem 1.3.5 (Bedford and Bell [BB82]). If D ⊂ �n, n > 1, is a bounded weakly pseudo-
convex domain with smooth real-analytic boundary, then any proper holomorphic self map-
ping of D is an automorphism.

Huang and Pan established an Alexander-type theorem for bounded domains with real-
analytic boundary (note that pseudoconvexity is not assumed).

Theorem 1.3.6 (Huang and Pan [HP96]). Let D ⊂ �n, n > 1, be a bounded domain with
smooth real-analytic boundary. Then any proper self-map of D that extends smoothly to ∂D
must be an automorphism.

Remark 1.3.7. From the results on the reflection principle surveyed in Section 1.2, it seems
likely that the extension hypothesis in the above result is actually redundant.

Berteloot obtained a precise description of the Lie algebra of holomorphic tangent vector
fields of strictly pseudoconvex Reinhardt hypersurfaces, and used this description to obtain an
Alexander-type theorem for bounded complete Reinhardt domains with C2-smooth bound-
ary.

Theorem 1.3.8 (Berteloot [Ber98]). Let D ⊂ �n, n > 1, be a bounded complete Reinhardt
domain with C2-smooth boundary. Then every proper holomorphic self-map of D is an
automorphism.

The following result by Coupet, Pan and Sukhov weakens the hypothesis on the symme-
tries of the domain in question, but requires additional hypotheses on the boundary and also
requires the domain to be in �2. In the two following results, the authors use the phrase
“smoothly bounded” to refer to a domain that is bounded and has C∞-smooth boundary.

Theorem 1.3.9 (Coupet, Pan and Sukhov [CPS99]). Let D ⊂ �2 be a smoothly bounded
pseudoconvex complete circular domain of finite type. Then every proper holomorphic self
mapping of D is an automorphism.

Coupet, Pan and Sukhov later extended the above theorem to quasi-circular domains.
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1.4 Bounded symmetric domains

Theorem 1.3.10 (Coupet, Pan and Sukhov [CPS01]). Let D ⊂ �2 be a smoothly bounded
pseudoconvex quasi-circular domain of finite type. Then every proper holomorphic self-map
of D is an automorphism.

The proofs of Theorems 1.3.8-1.3.10 introduce a new idea in the study of the Alexander
phenomenon: that of analyzing the behaviour of the iterates of the self-map in question. This
is, in our opinion, an extremely promising idea — we elaborate on this thought in Section 1.5.
Another result that exploits this idea is the following:

Theorem 1.3.11 (Berteloot and Patrizio [BP00]). Let D ⊂ �n, n > 1, be a bounded complete
circular domain with C2-smooth boundary. Let f : D → D be a proper holomorphic map,
and let fp be the lowest-degree non-constant homogeneous polynomial mapping in the Taylor
expansion of f about 0. If f −1{0} = f −1

p {0} = {0}, then f is a linear automorphism of D.

The above results prompt the following natural question (and is also one of the motivations
for the widely-discussed Conjecture 1.3.12):

What role, if any, do the various attributes of �n listed in the beginning of
this section play in the phenomenon exhibited in Alexander’s theorem?

Conjecture 1.3.12. Let D ⊂ �n, n > 1, be a bounded domain with C2-smooth boundary.
Then every proper holomorphic self-mapping of D is an automorphism.

Note that the above conjecture is far from being fully settled even with the additional
hypothesis of pseudoconvexity. But, as we have seen, a number of results are known if one
makes additional assumptions on the boundary and the automorphism group. In Section 1.5,
we give an outline of our generalization of Theorem 1.3.9 to higher dimensions.

1.4 Bounded symmetric domains

All the rigidity results that we have discussed so far, impose restrictions on the boundary.
One can also ask whether hypotheses solely on the automorphism group will also deliver
structure results. The following result by Bell gives a positive answer for circular domains
that contain the origin.

Theorem 1.4.1 (Bell [Bel93]). Let D1 and D2 be bounded circular domains in �n that con-
tain the origin. If f : D1 → D2 is a proper holomorphic mapping that fixes the origin, then
f is an algebraic mapping. Furthermore, if f −1{0} = {0}, then f is a polynomial mapping.
If it is still further assumed that f is a biholomorphism, then f must be linear.

Remark 1.4.2. Note that the last conclusion of the above theorem is the classical uniqueness
theorem of Cartan. The above result can, therefore, be viewed as a very broad generalization
of Cartan’s uniqueness theorem.

9
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Remark 1.4.3. A version of this result was presented in Section 1.2 (Theorem 1.2.9). The
above result is a later work of Bell, and the proof is unique in the sense that it does not use the
machinery of the Bergman kernel. However, a careful reading of [Bel93] will reveal that a lot
of the constructions and many of the lemmas are motivated by Bell’s earlier work [Bel82b]
that does use the Bergman kernel machinery.

Bell’s result is remarkable as we are able to obtain quite a strong structure result assuming
just circular symmetry. It is quite natural to ask whether a stronger conclusion can be obtained
in the presence of more symmetry. The following result due to Henkin and Novikov gives an
affirmative answer for a certain class of bounded symmetric domains.

Theorem 1.4.4 (Henkin and Novikov [HN84]). Let D ⊂ �n, n ≥ 3, be an irreducible
bounded symmetric domain of Type IV in Cartan’s classification. Then every proper holo-
morphic self-map of D is an automorphism.

Before we continue our survey, we pause and give a definition.

Definition 1.4.5. Let D ⊂ �n be a bounded domain. We say that D is symmetric if for each
a ∈ D, we can find an involutive automorphism sa of D such that a is an isolated fixed point
of D. We say that D is irreducible if it is not biholomorphic to a product of lower-dimensional
domains.

Remark 1.4.6. The definition of a bounded symmetric domain we have given is rather ad
hoc. In the language of differential geometry, a bounded symmetric domain is a realization
in �n, as a bounded domain, of a Hermitian symmetric space of non-compact type.

Cartan has given a complete classification of irreducible bounded symmetric domains,
showing that they are one of six types of homogeneous spaces. An outcome of Harish-
Chandra’s work is that these homogeneous spaces (and products thereof) can be imbedded
in �n as bounded convex balanced domains (hence, they are realizable as open unit balls
relative to some �-norm). This imbedding is unique up to a linear isomorphism of �n. Such
a realization of a bounded symmetric domain is called the Harish-Chandra realization.

The result of Henkin and Novikov (Theorem 1.4.4) proves that an Alexander-type theorem
holds true for domains of Type IV in Cartan’s classification. One would like to know whether
this is true for all six types. Henkin and Novikov make a remark at the end of [HN84] that
Bell’s result (Theorem 1.4.1) in combination with [TK82] in fact establishes Theorem 1.4.4
for all irreducible bounded symmetric domains other than �. We could not find any work in
the literature that works out the details of this remark. However, one can show that, with the
use of the aforementioned results — and following the scheme of the proof of Theorem 1.4.4
— the conclusion of Theorem 1.4.4 does extend to a larger subclass of the bounded symmet-
ric domains.

About a decade after the work of Henkin and Novikov, Tsai established the following
theorem, which settled a conjecture of Mok [Mok89, Chapter 6, (5.3)].
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Theorem 1.4.7 (Tsai [Tsa93]). Let D1 and D2 be two irreducible bounded symmetric do-
mains and let f : D1 → D2 be a proper holomorphic mapping. Furthermore, let rank(D1) ≥
rank(D2) ≥ 2. Then f is a totally geodesic isometric embedding (up to a normalization
constant) with respect to the Bergman metrics on D1 and D2.

Adapting Tsai’s ideas to the equidimensional case, Tu established the following result.

Theorem 1.4.8 (Tu [Tu02]). Let D1 and D2 be two equidimensional bounded symmetric
domains. Assume that D1 is irreducible and rank(D1) ≥ 2. Then, any proper holomorphic
mapping f : D1 → D2 is a biholomorphism.

In using Tsai’s ideas, the assumption that D1 is irreducible, is essential — see [Tu02,
Proposition 3.3] — and it is not clear that a small mutation of those ideas allows one to
weaken this assumption. On the other hand, the methods in [HN84] (and [TK82], on which
[HN84] relies), [Tsa93] and [Tu02] are tied, in a rather maximalistic way, to the fine structure
of a bounded symmetric domain. Furthermore, these methods are not applicable when D1 is
of rank 1 (i.e., D1 is biholomorphic to the unit ball).

It is also somewhat unsatisfactory that the methods used to deal with the higher rank case
are not complex-analytic in spirit — and rely upon significant machinery from representa-
tion theory and metric geometry — whereas one can give a purely complex-analytic proof
of Alexander’s theorem for the ball. In our work, we present a proof of a rigidity result for
bounded symmetric domains that does not involve any assumption on rank, and in which it
suffices that either D1 or D2 be irreducible in Theorem 1.4.8. This gives a result that sub-
sumes all the known rigidity results for proper holomorphic maps between equidimensional
bounded symmetric domains. Moreover, apart from some classical results on Hermitian sym-
metric spaces, our proof uses methods primarily from complex analysis. We give a precise
statement and brief discussion of our result in the next section.

1.5 A discussion of our results

In this section, we present the statements of our original results, and we highlight some of
the novelties in our proofs. Detailed proofs are given in subsequent chapters, and for the
convenience of the reader, the numbering of the following results will indicate their positions
in the later chapters.

We begin with the statement of our first structure result, which is a descriptive result.

Theorem 3.1.1. Let R j and Sj , j = 1, . . . ,n, be compact Riemann surfaces, and let X j

(resp.Yj) be a connected, hyperbolic open subset of R j (resp. Sj) for each j = 1, . . . ,n. Let
F = (F1, . . . ,Fn) : X1 × · · · × Xn → Y1 × · · · × Yn be a finite proper holomorphic map. Then,
denoting z ∈ X1 × · · · × Xn as (z1, . . . , zn), each Fi is of the form Fi (zπ(i)), where π is a
permutation of {1, . . . ,n}.

11
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Remark 1.5.1. It is essential for F to be a finite map in the above theorem. Without this
requirement, Theorem 3.1.1 is false. To see this, let X be some compact hyperbolic Riemann
surface. The map F : X2 → X2 defined by F (z1, z2) := (z1, z1) is a proper map. In fact, F
satisfies all the assumptions of Theorem 3.1.1 except finiteness.

Remark 1.5.2. The conclusion of the above theorem can fail if even one of the factors is
non-hyperbolic. Consider X = � × (�̂ \ {p}), where p ∈ �̂ and � denotes the unit disc in
�. We know that �̂ \ {p} is not hyperbolic. We view �̂ \ {p} as �. It is easy to check that
any F ∈ Aut(� × �) is of the form

F (z1, z2) = (ψ(z1), A(z1)z2 + B(z1)),

where ψ ∈ Aut(�), A,B ∈ O(�) and A is non-vanishing.

Our motivation for considering connected hyperbolic open subsets of compact Riemann
surfaces comes from the illustrative example, Example3.1.2, presented in Chapter 3. The
novelty of our proof, from the viewpoint of function theory, lies in our use of the fact that the
set of non-constant holomorphic maps between certain Riemann surfaces is at most finite.
This phenomenon is well understood in the realm of compact complex manifolds; see, for
instance, [Kob98, Chapters 6 & 7]. However, the factors X j and Yj in Theorem 3.1.1 are
not necessarily compact. We will see that the main idea in the Remmert–Stein theorem
(i.e. Result 1.1.2) is still useful in our more general setting. Loosely speaking, we show
that, in general, the manifold X1 × · · · × Xn splits into two factors, one of which is the
product of those non-compact factors to which the Remmert–Stein method can be applied.
The finiteness result that is essential to our proof is a result by Imayoshi [Ima83]. We give a
detailed proof of Theorem 3.1.1 in Chapter 3.

We now come to rigidity results. Before we state our first result, we make a preliminary
definition.

Definition 1.5.3. We say that a domain D ⊂ �n is circular if, for any z ∈ D, eiθ z ∈ D, ∀θ ∈
[0,2π). We say that it is balanced if, for any z ∈ D, ζ z ∈ D for each ζ ∈ �.

Remark 1.5.4. Balanced domains are also called complete circular domains in the literature.
In stating the results of this thesis, we shall use the term “balanced” rather than the term
“complete circular” as we feel that the adjective complete is used to denote too many things
in the literature.

Our first rigidity result is the following theorem. We point out that this theorem extends
the result of Coupet–Pan–Sukhov (Theorem 1.3.9 above) to higher dimensions.

Theorem 4.1.1. Let Ω ⊂ �n, n > 1, be a smoothly bounded pseudoconvex balanced domain
of (D’Angelo) finite type. Then every proper holomorphic self mapping F : Ω → Ω is an
automorphism.

12
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The proofs of both Theorem 1.3.9 and Theorem 4.1.1 share some key ideas. Central to both
is the need for a proposition that gives a precise description of the branch locus of a proper
holomorphic self-mapping of the domain under consideration in Theorem 4.1.1, under the
assumption that this map is branched. In our setting, a proposition that suffices is as follows:

Proposition 4.1.2. Let Ω ⊂ �n, n > 1, be a smoothly bounded pseudoconvex balanced
domain of (D’Angelo) finite type. Let F : Ω → Ω be a proper holomorphic mapping, and
assume that the branch locus VF := {z ∈ Ω : Jac�F (z) = 0} , ∅. Let X be an irreducible
component of VF . Then for each z ∈ X, the set (� · z) ∩Ω is contained in X.

Needless to say, the strategy of our proof of Theorem 4.1.1 will be to use the above proposi-
tion to reach a contradiction.

Coupet, Pan and Sukhov have proved a version of Proposition 4.1.2 for domains in �2 in
which the domain need not be balanced, but is only required to admit a transverse �-action.
The point that is worth highlighting here is that by restricting ourselves to balanced domains,
we are able to give an almost entirely elementary proof, and that these methods have one sig-
nificant payoff: we do not have to assume in the above results that the �-action is transverse.
We bypass the need for transversality by using some results from dimension theory. These
results are insensitive to dimension, which allows us to state and prove Theorem 4.1.1 in �n

for all n > 1.

A key tool used in the proofs of Proposition 4.1.2 and Theorem 4.1.1 is the function
τ : ∂Ω → �+ ∪ {0} introduced by Bedford and Bell (see [BB82, Bel84a]). The num-
ber τ(p) is the order of vanishing in the tangential directions of the Levi determinant of a
smoothly bounded pseudoconvex domain at the point p ∈ ∂Ω. The function τ has been suc-
cessfully used to study the branching behaviour of proper holomorphic mappings in many
earlier results.

Using Proposition 4.1.2, one can prove that F−1{0} = {0}. It is at this point that our proof
and the proof given by Coupet–Pan–Sukhov diverge. For domains in �2, with the notation
as in Proposition 4.1.2, it is easy to see that VF must be a finite union of disks. It follows
from this, in �2, that F is a homogeneous polynomial map. Using the last three facts and
a result by Hubbard and Papadopol [HP94], Coupet–Pan–Sukhov conclude the ∂Ω must be
non-smooth. From this contradiction, they infer that VF cannot be non-empty. We remark
in passing that, having proved that F is a homogeneous polynomial mapping, the fact that F
must be an automorphism follows at once from Theorem 1.3.11.

Our approach to finishing the proof of Theorem 4.1.1 also relies on tools from complex
dynamics. Motivated by the fact that a number of rigidity results on circular domains use
tools from complex dynamics, we searched the literature for results or techniques in complex
dynamics that would be effective in higher dimensions. A recent reuslt of Opshtein gives us
the tools that we need. Refer to Section 4.3 for the definitions of the terms that occur in the
following result:
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Result 1.5.5 (Opshtein [Ops06], Théorème A and Remarque 30). Let D ⊂ �n, n > 1, be a
smoothly bounded pseudoconvex domain whose boundary is B-regular. Let f : D → D be a
proper holomorphic self-map that is recurrent. Then the limit manifold of f is necessarily of
dimension higher than 1.

In [Ops06], Opshtein suggests that his results could serve as a new set of tools for es-
tablishing Alexander-type theorems. He has also established a slight generalization of The-
orem 1.3.9 using these tools ([Ops06, Théorème C]). We found Opshtein’s viewpoint very
useful in the context of Theorem 4.1.1.

Finally, we present the statements of our rigidity results on bounded symmetric domains.

Theorem 5.1.1. Let D1 and D2 be two bounded symmetric domains of complex dimension
n ≥ 2. Assume that either D1 or D2 is irreducible. Then, any proper holomorphic mapping
of D1 into D2 is a biholomorphism.

As we had mentioned in Section 1.4, the above result subsumes all the other known rigid-
ity results on equidimensional bounded symmetric domains. We now highlight a couple of
features of our work, contrasting it with some of the results surveyed in Section 1.4.

a) The techniques underlying [Tsa93] and [Tu02] rely almost entirely on the fine struc-
ture of a bounded symmetric domain. Specifically, they involve studying the effect of a
proper holomorphic map on the characteristic symmetric subspaces of a bounded sym-
metric domain of rank ≥ 2. In contrast, our techniques rely on only a coarse distinction
between the different strata that comprise the boundary of an irreducible bounded sym-
metric domain.

b) An advantage of arguments that rely on only a coarse resolution of a bounded sym-
metric domain is that some of them are potentially applicable to the study of domains
that have non-compact automorphism groups, but are not assumed to be symmetric. A
demonstration this viewpoint is the proof of Theorem 5.1.3 below.

Let D be a bounded symmetric domain. The main technical tool that facilitates our study
of the structure of ∂D, and describes certain elements of Aut(D) with the optimal degree
of explicitness, is the notion of Jordan triple systems. The application of Jordan triple sys-
tems to geometry appears to have been pioneered by Koecher [Koe99]. Our reference on this
subject are the lecture notes of Loos [Loo77], which are devoted specifically to the bounded
symmetric domains. Jordan triple systems and versions of the Schwarz lemma are our pri-
mary tools. Given a bounded symmetric in domain in its Harish-Chandra realization, one
can, using the Bergman kernel and metric, associate to it a triple product on �n that satisfies
certain special properties. Geometric properties of the bounded symmetric domain get trans-
lated into algebraic properties of the associated triple system. For instance, one can obtain
a precise description of the boundary geometry of a bounded symmetric domain. One also
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obtains descriptions of the Shilov boundary of a bounded symmetric domain. These descrip-
tions are obtained in a manner that does not discriminate between the unit (Euclidean) ball
in �n, n ≥ 2, and the higher-rank domains. This is one feature that distinguishes our proof
from those in [Tsa93] and [Tu02].

The machinery of Jordan triple systems also furnishes formulas for certain special auto-
morphisms of bounded symmetric domains (the analogues of the classical Möbius transfor-
mations on� that map the origin to points in�\{0}). While the specific formulas can be very
complicated, their general descriptions in terms of operators described by the triple-system
machinery are such that one can make a universal estimate — irrespective of the specific
domain or its rank — on the extensions of these automorphisms to the boundary. The ability
to extend the aforementioned automorphisms, with good estimates, to the boundary is key to
our proof — we elaborate a bit more on this thought in Section 5.1.

We now state a result that was obtained in collaboration with Gautam Bharali. The result
demonstrates the application of some of the techniques used in the proof of Theorem 5.1.1 in
more general contexts. We first need a few definitions.

Definition 1.5.6. Let D  �n be a domain and let p ∈ ∂D. We say that p is a peak point if
there exists a function h ∈ O(D) ∩ C(D;�) such that h(p) = 1 and |h(z) | < 1 ∀z ∈ D \ {p}.
The function h is called a peak function for p.

Definition 1.5.7. Let D  �n be a domain and let p ∈ ∂D. We say that p is a boundary
orbit-accumulation point if there exist a point a ∈ D and a sequence of automorphisms {φk}
of D such that limk→∞ φk (a) = p.

Remark 1.5.8. When a domain D is bounded, the non-compactness of Aut(D) (in the compact-
open topology) is equivalent to D having a boundary orbit-accumulation point; see [Nar71].

With the last two definitions, we are in a position to state our second theorem on bounded
symmetric domains. Note that D1 is not assumed to be a bounded symmetric domain. Yet,
some of the techniques (versions of which have been used to remarkable effect in the litera-
ture in this field) used in the proof of Theorem 5.1.1 are general enough to be applicable to
the following situation.

Theorem 5.1.3. Let D1 be a bounded convex balanced domain in �n whose automorphism
group is non-compact and let p be a boundary orbit-accumulation point. Let D2 be a realiza-
tion of a bounded symmetric domain as a bounded convex balanced domain in �n. Assume
that there is a neighbourhood U of p and a biholomorphic map F : U → �n such that
F (U ∩ D1) ⊂ D2 and F (U ∩ ∂D1) ⊂ ∂D2. Assume that either p or F (p) is a peak point.
Then, there exists a linear map that maps D1 biholomorphically onto D2.

Remark 1.5.9. Theorem 5.1.3 (together with Bell’s theorem [Bel82b]) gives a very short
proof of the rigidity theorem of Mok and Tsai [MT92] under the additional assumption that
the convex domain D in their result is also circular. There is an extensive literature on rigidity
theorems relating to bounded symmetric domains, but we shall not dwell any further on it.
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The purpose of this chapter is to present, in one convenient place, a number of definitions
and results that we will use in more than one occasion in what follows. We will not prove all
the results, but we will give precise references. We begin by presenting the basic definitions
and results pertaining to proper holomorphic mappings in Section 2.1. Section 2.2 summa-
rizes the basic properties of the Bergman kernel. We also present a result of Bell on proper
holomorphic mappings of circular domains in this section. Finally, in Section 2.3, we present
material on complex geodesics, which have proven to be a very powerful tool in the study of
holomorphic mappings.

2.1 Proper holomorphic mappings

The standard reference for this section is [Rud08, Chapter 15]. We begin with the definition
of a proper holomorphic mapping.

Definition 2.1.1. Let X and Y be topological spaces. A continuous map F : X → Y is said
to be proper if F−1(K ) is compact in X for every compact K ⊆ Y .

In the case where F : D → D′ is a proper map, and D and D′ are domains in �n and
�m, respectively, this is equivalent to the requirement that for every sequence {zi} in D that
has no limit point in D, {F (zi)} has no limit point in D′. By the definition of properness,
it also follows that the inverse image of a point w ∈ D′ under F is a compact complex-
analytic subvariety of D, and hence must be finite. Thus, proper holomorphic mappings
between domains are finite mappings. This, combined with the rank theorem, also shows
that if m < n, then there cannot be a proper holomorphic mapping from D into D′.

The next result summarizes the basic properties of a proper holomorphic mappings be-
tween domains of the same dimension.

Result 2.1.2. Let D, D′ ⊂ �n be domains, and let F : D → D′ be a proper holomorphic
mapping. Then:

(i) F (D) = D′;

(ii) the regular values of F form a connected open set that is dense in D′;

(iii) there is an integer m such that #(F−1{w}) = m when w ∈ D′ is a regular value and is
independent of w, and #(F−1{w}) < m when w ∈ D′ is a critical value;
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(iv ) F (V ) is a complex-analytic subvariety of D′ whenever V is a complex-analytic subva-
riety of D.

2.2 The Bergman kernel and Bell’s theorem

Let D ⊂ �n be a bounded domain. We are interested in the space B(D) := L2(D) ∩ O(D).
It is a standard fact that B(D) is a closed subspace of L2(D), and is therefore a Hilbert space
in its own right. It is also easy to see that for a fixed a ∈ D, the evaluation map

τa : B(D) 3 f 7→ f (a) ∈ �,

is a continuous linear functional. Therefore, by the Riesz representation theorem, there is a
unique element in B(D), say KD (·,a), such that

τa ( f ) =

∫
D

f (w)KD (w,a) dV (w).

The function KD : D×D → � thus defined is called the Bergman kernel of D. The following
result summarizes the basic properties of the Bergman kernel.

Result 2.2.1. Let D ⊂ �n be a bounded domain, and let KD be its associated Bergman
kernel. Then,

(i) KD (w, z) is holomorphic in w and conjugate holomorphic in z. In fact, we have

KD (w, z) = KD (z, w).

(ii) For any orthonormal basis {φ j : j = 1,2, . . .} of B(D), we have the representation

KD (w, z) =

∞∑
j=1

φ j (w)φ j (z) ∀(w, z) ∈ D × D,

where the convergence is uniform on compact subsets of D × D.

(iii) Let PD : L2(D) → B(D) be the orthogonal projection. Then, PD satisfies

(PD f )(w) =

∫
D

f (z)KD (w, z) dV (z) ∀ f ∈ L2(D), ∀w ∈ D.

We now state a result of Bell that describes the transformation of the Bergman kernel and
the Bergman projection under a proper holomorphic mapping. This transformation formula
is one of the most important tools in the study of proper holomorphic mappings.

18



2.2 The Bergman kernel and Bell’s theorem

Result 2.2.2 (Bell [Bel82a]). Let D1 and D2 be bounded domains with associated Bergman
kernels K1 and K2 respectively. Let f : D1 → D2 be a proper holomorphic mapping. Let V
be the set of critical values of f . Then,∑

z∈ f −1{ζ}
K1(w, z)

Jac�( f )(z)
= Jac�( f )(w)K2( f (w), ζ ) ∀w ∈ D1,∀ζ ∈ D2\V. (2.1)

The transformation formula for the Bergman projection is given by

Jac�( f ) · (P2g) ◦ f = P1 (Jac�( f ) · g ◦ f ) ∀g ∈ L2(D2). (2.2)

We shall now present an application of the transformation formula to proper holomorphic
mappings of circular domains.

Result 2.2.3 (Bell [Bel82b]). Suppose f : D1 → D2 is a proper holomorphic map between
bounded circular domains. Suppose further that D2 contains the origin and that the Bergman
kernel K (w, z) associated to D1 is such that for each compact subset G of D1, there is an
open set U = U (G) containing D1 such that K (·, z) extends to be holomorphic on U for each
z ∈ G. Then f extends holomorphically to a neighbourhood of D1.

The above result is presented at the end of the paper cited above, without proof. It is clear that
no proof is given because its proof follows mutatis mutandis from the arguments presented
in [Bel82b] and [Bel81]. For the reader’s convenience, we present a proof here. We begin
with a lemma from [Bel82b].

Lemma 2.2.4 (Lemma C of [Bel82b]). Suppose D ⊂ �n is a bounded circular domain that
contains the unit ball �n. Let P be the Bergman projection associated to D. For each multi-
index α ∈ �n, there is a function φα ∈ C∞0 (�n) such that Pφα = zα.

The proof of Result 2.2.3. Without loss of generality, we may assume that the unit ball is
contained in D2. Fix a multi-index α ∈ �n, and let φα be the function from Lemma 2.2.4
associated to D2. From the transformation rule for the Bergman projection (2.2), we get

Jac�( f ) · f α = Jac�( f ) · (zα ◦ f ) = P1 (Jac�( f ) · (φα ◦ f )) ,

where P1 denotes the Bergman projection associated to D1. In the integral form, we have :

Jac�( f )(w) · f α (w) =

∫
D1

K1(w, z)Jac�( f )(z)φα ( f (z)) dV (z). (2.3)

Note that, for a fixed w,

Supp (K1(w, z)Jac�( f )(z)φα ( f (z))) ⊂ f −1(Supp(φα)).

As Supp(φα) is a compact set, it follows from properness that Gα := f −1(Supp(φα)) is also
a compact set. By hypothesis, there exists an open set Uα ⊃ D1 such that the K1(·, z) extends
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to be holomorphic on Uα for each z ∈ Gα. Therefore, it follows from (2.3) that for each
multi-index α, Jac�( f )(w) · f α (w) extends to be holomorphic on Uα. This proves that each
multi-index α, Jac�( f ) · f α ∈ O(D1), the ring of holomophic functions that extend to some
neighbourhood of D1. Note that this ring is a UFD. We will now show that fi ∈ O(D1), where
fi is some component of f . We have Jac�( f ) · f k

i ∈ O(D1) ∀k ∈ �+ ∪ {0}. Consequently,
Jac�( f )k−1 divides (Jac�( f ) · fi)k in O(D1) for any k ∈ �+. Let g ∈ O(D) be an irreducible
factor of Jac�( f ), and suppose that gs divides Jac�( f ). Then gs(k−1) divides Jac�( f )k−1,
and hence g must appear at least ds(k−1)/ke times in the unique factorization of Jac�( f ) · fi,
whereds(k − 1)/ke is the smallest integer greater than or equal to s(k − 1)/k. Since k is an
arbitrary positive integer, it follows that gs divides Jac�( f ) · fi in O(D1). Repeating the same
argument for the other irreducible factors, we conclude that Jac�( f ) divides Jac�( f ) · fi

in O(D1), proving that fi ∈ O(D1). This proves that f extends holomorphically to some
neigbhourhood of D1, and we are done. �

Now let D be any bounded balanced domain (not necessarily convex) in �n. If D is not
convex, it will not be a unit ball with respect to some norm on �n. However, we do have a
function that has the same homogeneity property as a norm, with respect to which D is the
“unit ball”. The function MD : �n → [0,∞) defined by

MD (z) := inf{t > 0 : z/t ∈ D}
is called the Minkowski functional for D. Assume that the intersection of each complex line
passing through 0 ∈ �n with ∂D is a circle. Let G be a compact subset of D. Then, as MD is
upper semicontinuous, ∃rG ∈ (0,1) such that G ⊂ {z ∈ �n : MD (z) < rG} and the latter is
an open set. Hence z/rG ∈ D ∀z ∈ G. Clearly, rGw ∈ D ∀w ∈ {z ∈ �n : MD (z) < 1/rG} =:
U (G). By our assumptions, D ⊂ U (G). Let KD be the Bergman kernel of D. We recall that:

KD (w, z) =

∞∑
j=1

ψ j (w)ψ j (z) ∀(w, z) ∈ D × D,

where the right-hand side converges absolutely and uniformly on any compact subset of
D × D and {ψ j : j = 1,2,3, . . . } is any complete orthonormal system for B(D). Then
— owing to the fact that the collection {Cαzα : α ∈ �n} (where Cα > 0 are suitable
normalization constants) is a complete orthonormal system for B(D) — we can infer two
things. First: the functions

φz (w) := KD (rGw, z/rG), w ∈ U (G), (2.4)

are well-defined by power series for each z ∈ G. Secondly:

KD (rGw, z/rG) = KD (w, z) ∀(w, z) ∈ D × G.

Comparing this with (2.4), we see that each φz extends KD (·, z) holomorphically. In view of
Result 2.2.3, we have just deduced:
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Lemma 2.2.5. Let f : D1 → D2 be a proper holomorphic map between bounded balanced
domains. Assume that the intersection of every complex line passing through 0 with ∂D1 is a
circle. Then f extends holomorphically to a neighbourhood of D1.

The above lemma is used in the proofs of all our rigidity results.

2.3 Complex geodesics

In what follows, given a domain D ⊂ �n, we will denote the Kobayashi pseudo-distance by
KD, the Carathéodory pseudo-distance by CD and the infinitesimal versions by κD and γD

respectively. We will denote the Poincaré metric and distance on� byω and p
�

, respectively.
For a detailed treatment of invariant metrics refer to [JP93]. It follows from the definitions
that CD (x, y) ≤ KD (x, y) and γD (x; v ) ≤ κD (x; v ) ∀x, y ∈ D and v ∈ �n.

The notion of complex geodesics was introduced by Vesentini ([Ves81, Ves82]) and is a
useful tool in the study of holomorphic mappings.

Definition 2.3.1. Let D ⊂ �n be a domain, and let φ : �→ D be a holomorphic map.

(i) Let a,b ∈ D. The map φ is said to be a dD-geodesic for (a,b) if there exist points
x, y ∈ � such that φ(x) = a, φ(y) = b, and p

�
(x, y) = dD (a,b), where dD is either

KD or CD.

(ii) Let a ∈ D and V ∈ �n. The map φ is said to be a δD-geodesic for (a,V ) if there
exists a number α ∈ � and a point x ∈ � such that φ(x) = a, V = αφ′(x), and
δD (a; V ) = ω(x; α), where δD is either γD or κD.

We need one more notion before we can state the main result of this section.

Definition 2.3.2. Let D ⊂ �n be a bounded domain. We say that a point a ∈ ∂D is holo-
morphically extreme if there is no non-constant holomorphic mapping φ : � → D such that
φ(0) = a. We say that a is a complex extreme point if the only vector b ∈ �n for which
a + (b ·�) ⊂ D is b = 0.

Remark 2.3.3. Note that every holomorphically extreme point is automatically complex ex-
treme. It is known that the two notions are equivalent for convex domains.

The following uniqueness result for KD-geodesics illustrates the importance of the above
definition; see [JP93, Proposition 8.3.5] for a proof.

Result 2.3.4. Let D ⊂ �n be a bounded balanced pseudoconvex domain, and let a ∈ D,a ,
0, be such that a/MD (a) ∈ ∂D is holomorphically extreme, where MD is the Minkowski
functional of D. Then the mapping

φa : � 3 λ 7→ λa/MD (a)

is the unique (modulo Aut(�)) KD-geodesic (κD-geodesic) for (0,a) (resp., (0,a/MD (a))).
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3 Proper holomorphic mappings of
hyperbolic product manifolds

In this chapter, we prove a result on the structure of finite proper holomorphic mappings
between complex manifolds that are products of hyperbolic Riemann surfaces. While an
important special case of our result follows from the ideas developed by Remmert and Stein,
the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem
for Riemann surfaces.

Most of the material presented below also appears in the preprint [Jan11].

3.1 Introduction and a motivating example

The main theorem of this chapter is:

Theorem 3.1.1. Let R j and Sj , j = 1, . . . ,n, be compact Riemann surfaces, and let X j

(resp.Yj) be a connected, hyperbolic open subset of R j (resp. Sj) for each j = 1, . . . ,n. Let
F = (F1, . . . ,Fn) : X1 × · · · × Xn → Y1 × · · · × Yn be a finite proper holomorphic map. Then,
denoting z ∈ X1 × · · · × Xn as (z1, . . . , zn), each Fi is of the form Fi (zπ(i)), where π is a
permutation of {1, . . . ,n}.

We draw the reader’s attention to Remarks 1.5.1 and 1.5.2 for a discussion on why the
assumptions of finiteness and hyperbolicity above are essential.

The above result generalizes the classical Remmert–Stein theorem (Theorem 1.1.2). As
we had mentioned in Section 1.5, we use a finiteness theorem of Imayoshi to deal with those
factors that are compact or compact but for finitely many punctures. The following example
motivates, through a special case, the need for a finiteness theorem in circumstances where
the techniques used by Remmert and Stein are not applicable.

Example 3.1.2. Let D = � \ {0,1}, and f = ( f1, f2) be a proper holomorphic self-map of
D × D. Note that D is hyperbolic. Even though most of the hypotheses of the Remmert–Stein
theorem are not satisfied, its conclusion still follows.
This is not hard to see. Fix z0 ∈ � \ {0,1}. By the big Picard theorem, it follows that 0,1
and ∞ are removable singularities or poles of the map h := f1(z0, ·). Hence h extends as
a holomorphic map to �̂, and is therefore a rational map. If h is not proper as a map from
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3 Proper holomorphic mappings of hyperbolic product manifolds

� \ {0,1} to itself, then there is a sequence {xn} ⊆ � \ {0,1} that converges to either 0,1 or
∞, such that some subsequence of the image sequence {h(xn)} converges to a finite point in
� \ {0,1}. Hence h is a rational map that misses at least one of the points 0,1 or∞, and must
therefore be constant.

On the other hand, assume that h is a proper map from � \ {0,1} to itself; then it is a
non-constant rational map. Thus, if h = P

Q , where P and Q are two polynomials having
no common factors, at least one of P or Q has to be non-constant. Also, note that h takes
{0,1,∞} to itself.

If P were non-linear, it would follow that either Q has the same degree as P, or Q is some
constant C. In the latter case, both P and P − Q are non-constant polynomials with disjoint
zero sets. From this, it follows that P is either zk or (z − 1)k , k > 1. Therefore, the equation
h = 1 has roots different from 0 and 1, which is a contradiction. If P and Q have the same
degree, then it follows that P

Q is of the form Rk , where R is a non-constant rational function,
and the value 1 is attained by k distinct values, which is also a contradiction. Hence P is
linear, and a similar argument shows that Q is also linear. Hence h is a fractional linear
transformation that takes {0,1,∞} to itself. There are only six possibilities for the map h.
From this it follows that, if for some z0, f1(z0, ·) is an automorphism, then f1(z, ·) is the
same automorphism for all z ∈ � \ {0,1} (see Lemma 3.3.3). Together with the conclusion
of the first paragraph, this proves that f1(z, ·) is either constant for all z, or is independent of
z. Applying the same argument to f2, we conclude that the conclusion of the Remmert–Stein
theorem still holds.

Our choice of factors to consider in Theorem 3.1.1 motivated by the above example. The
key fact used in the above example is that there are only finitely many proper holomorphic
self-maps of � \ {0,1}. This is not true for the domains � and � \ {0}. But it is true
for hyperbolic Riemann surfaces that are either compact, or compact but for finitely many
punctures. This is the finiteness theorem of Imayoshi, which generalizes an earlier result due
to de Franchis. We also used the big Picard theorem in the argument above. An analogue of
the big Picard theorem for certain hyperbolic complex manifolds, given by Kobayashi, can be
used in the situation of Theorem 3.1.1. The result of Imayoshi and the relevant generalization
of the big Picard theorem, plus some technical necessities, are presented in Section 3.3.

If each factor in Theorem 3.1.1 is such that its boundary in the ambient compact Riemann
surface is a non-empty indiscrete set, then the normal families argument used by Remmert
and Stein can be adapted to deliver the conclusion of Theorem 3.1.1. We isolate this part
of our proof as Proposition 3.4.1. The version of Montel’s theorem that is needed for this
proposition is presented in Section 3.2. The complete proof of Theorem 3.1.1 is presented in
Section 3.4.
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3.2 A version of Montel’s theorem

3.2 A version of Montel’s theorem

In the proof of our main result, we need a version of Montel’s theorem that is adapted to our
situation. The proof of this version requires some general results about normal families. We
state these results, with references, in this section. Throughout this section, M and N will
denote complex manifolds, and O(M,N ) will denote the space of holomorphic maps from
M into N . We give O(M,N ) the compact-open topology. We begin with the definition of a
normal family.

Definition 3.2.1. A subset F of O(M,N ) is said to be normal if every sequence of F contains
a subsequence { fn} that is either convergent in O(M,N ), or is compactly divergent. By the
latter we mean that given compact sets K ⊆ M and H ⊆ N , fn(K )∩H = ∅ for all sufficiently
large n.

Result 3.2.2 (see [Kie70], Proposition 3). Let M be a complex manifold, and let N be a
complete Kobayashi hyperbolic complex manifold. Then O(M,N ) is a normal family.

Result 3.2.3 (see [Kob67], Theorem 5.5). Let X be a hyperbolic Riemann surface. Then X
is complete Kobayashi hyperbolic.

We now state and prove the version of Montel’s Theorem that we need, which is a corollary
of the last two results.

Corollary 3.2.4. Let X be a connected complex manifold and let R be a hyperbolic open con-
nected subset of a compact Riemann surface S. Then, given any sequence { fν} ⊂ O(X,R),
there exists a subsequence { fνk} and a holomorphic map f0 : X → R (the closure taken in S
whenever R is non-compact) such that fνk → f0 uniformly on compact subsets of X.

Proof. We begin by noting that if R is compact, then the result follows immediately from
Results 3.2.3 and 3.2.2.

We now consider the case when R is a punctured Riemann surface. By Result 3.2.2,
O(X,R) is a normal family. There is nothing to prove if there exists a subsequence { fνk}
that converges uniformly on compact subsets of X . Therefore, let us consider the case when
we get only a compactly divergent subsequence { fνk}. Let {K j : j ∈ �+} be an exhaustion
of X by connected compact subsets, and let {L j : j ∈ �+} be an exhaustion of R by com-
pact subsets. Since R is obtained from S by deleting finitely many points from it, compact
divergence implies that we can extract a further subsequence from { fνk} — which we shall
re-index again as { fνk} — such that fνk (K1) ⊂ D∗ ∀k, where D∗ is a deleted neighbourhood
of one of the punctures, say p0. Now, given any j ∈ �+, there exists a k ( j) ∈ �+ such that,
by the connectedness of the K j’s, we have:

fνk (K j ) ⊂ (D∗ \ L j ) ∀k ≥ k ( j).

This just means that fνk → p0 uniformly on compacts as k → ∞.
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3 Proper holomorphic mappings of hyperbolic product manifolds

In the general case, as R is hyperbolic, we can make sufficiently many punctures in S to
get a Riemann surface R′ that is hyperbolic and R ⊆ R′ ⊂ S . By considering each fν as
a mapping in O(X,R′), we can find, by the preceding argument, a subsequence { fνk} and a
holomorphic map f0 : X → R′ such that fνk → f0 uniformly on compact subsets of X . As
each fνk ∈ O(X,R), we must have f0 ∈ O(X,R), and we are done. �

3.3 Some technical necessities

In this section we summarize several results that we need for the proof of Theorem 3.1.1. We
state these results with appropriate references. We begin with an extension of a classical re-
sult due to de Franchis [dF13], which states that there are at most finitely many non-constant
holomorphic mappings between two compact hyperbolic Riemann surfaces. We shall call a
Riemann surface obtained by removing a finite, non-empty set of points from some compact
Riemann surface a punctured Riemann surface. A Riemann surface obtained by removing n
points from a compact Riemann surface of genus g will be called a Riemann surface of finite
type (g,n). Imayoshi extended de Franchis’ result as follows:

Result 3.3.1 (Imayoshi [Ima83]). Let R be a Riemann surface of finite type and let S be a
Riemann surface of finite type (g,n) with 2g − 2 + n > 0. Then the set of non-constant
holomorphic maps from R into S is at most finite.

The above result combined with the following lemma will play a key role in the proof of the
main theorem. To state this lemma, we need a definition.

Definition 3.3.2. Let F : X → Y be a map between two sets, and suppose that X = X1 ×

· · · × Xn. We say that F is independent of X j if, for each fixed (x0
1, . . . , x

0
j−1, x

0
j+1, . . . , x

0
n),

x0
i ∈ Xi, the map

X j 3 x j 7−→ F (x0
1, . . . , x

0
j−1, x j , x0

j+1, . . . , x
0
n),

is a constant map. We say that F varies along X j if F is not independent of X j .

Lemma 3.3.3. Let R and S be as in Result 3.3.1, and let X be a connected complex manifold.
Let F : R × X → S be a holomorphic mapping with the property that for some x0 ∈ X, the
mapping R 3 z 7→ F (z, x0) ∈ S is a non-constant mapping. Then F is independent of X.

Proof. Let dR and dS be metrics that induce the topology of R and S, respectively. By Result
3.3.1, the set of non-constant holomorphic mappings from R to S is at most finite. By our
hypotheses, there is at least one such map. Let F1, . . . ,Fk be the only distinct non-constant
mappings in O(R,S). Let x0 ∈ X be such that the map F (·, x0) is non-constant. By continuity
of F, there is an X-open neighbourhood U0 3 x0 such that F (·, x) is non-constant for x ∈ U0.
Choose ε > 0 and ri j ∈ R, 1 ≤ i, j ≤ k, i , j, such that dS (Fi (ri j ),Fj (ri j )) > ε. By the
continuity of F, we can find a neighbourhood U ⊂ U0 of x0 such that, for each of the ri j’s, we
have dS (F (ri j , x),F (ri j , y)) < ε ∀x, y ∈ U . This is possible only if F (·, x) ≡ F (·, y), ∀x, y ∈
U . It follows that
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3.3 Some technical necessities

• ∃ j0 ≤ k such that F (·, x) = Fj0 ∀x ∈ U;

• For each fixed r ∈ R, the map F (r, ·) is constant on U.

As X is connected, the Identity Theorem implies that F (r, ·) ≡ Fj0 (r). This proves that F is
independent of X . �

The next result is the well known Remmert’s Proper Mapping Theorem. For the proof,
refer to [Chi89, p. 31].

Result 3.3.4 (Proper Mapping Theorem). Let X and Y be complex manifolds, and let A be
an analytic subset of X. Let f : A → Y be a proper finite holomorphic map. Then, f (A) is
an analytic subset of Y , and at every w ∈ f (A)

dimw f (A) = max{dimz A : f (z) = w}.
In particular, dimA = dim f (A). Furthermore, if A = X and dim(X ) = dim(Y ) then F is
surjective.

The following result of Kobayashi [Kob98, p. 284] can be thought of as an higher dimen-
sional analogue of the big Picard theorem. For this, we first need to make a definition.

Definition 3.3.5. Let Z be a complex manifold and let Y be a relatively compact complex
submanifold of Z . We call a point p ∈ Y a hyperbolic point if every neighbourhood U of p
contains a smaller neighbourhood V of p, V ⊂ U, such that

KY (V ∩ Y,Y \U) := inf{KY (x, y) : x ∈ V ∩ Y, y ∈ Y \U} > 0,

where KY denotes the Kobayashi pseudo-distance on Y . We say that Y is hyperbolically
imbedded in Z if every point of Y is a hyperbolic point.

Result 3.3.6 (Kobayashi). Let Y and Z be complex manifolds, and let Y be hyperbolically
imbedded in Z. Then every map h ∈ O (�∗,Y ) extends to a map h̃ ∈ O(�, Z ).

Lemma 3.3.7. If Y is a hyperbolic open connected subset of a compact Riemann surface Z,
then Y is hyperbolically imbedded in Z.

Proof. The lemma is obvious if Y has only isolated boundary points. If not, then, as Y
is hyperbolic, we can make sufficiently many punctures in Z to get a hyperbolic Riemann
surface Ỹ such that Y ⊂ Ỹ ⊂ Z . It follows that Ỹ is hyperbolically imbedded in Z . Now let

y ∈ Y . Then, y ∈ Ỹ . Let U be a neighbourhood of y , and let V be a smaller neighbourhood
of y such that

KỸ (V ∩ Ỹ ,Ỹ \U) > 0.

As KY ≥ KỸ on Y × Y and Y ⊆ Ỹ , it follows that y is also a hyperbolic point of Y . Conse-
quently, Y is hyperbolically imbedded in Z . �
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3 Proper holomorphic mappings of hyperbolic product manifolds

We require one more result, a generalization of Rado’s theorem that is proved in [Nar71].

Lemma 3.3.8. Let (φµν), 1 ≤ µ ≤ k, 1 ≤ ν ≤ l, be a matrix of holomorphic functions on
D ⊆ U, where D and U are connected open subsets of �, and U \D is a non-empty indiscrete
set. Suppose that

l∏
ν=1

k∑
µ=1

���φµν (z)���
2
→ 0 as D 3 z → ζ

for any ζ ∈ ∂D ∩U. Then, for some ν0, 1 ≤ ν0 ≤ l, we have

φµν0 ≡ 0, µ = 1, . . . , k .

Proof. Suppose each column of (φµν) has a member that is not identically 0 on D. Let f
be the product of these members. We extend f to be a function on U by defining f ≡ 0
on U \ D. By hypothesis, f is continuous on U and holomorphic on D. Therefore by the
classical Rado’s theorem f ≡ 0, a contradiction. �

3.4 Proof of the main theorem

We begin this section by considering a special case of Theorem 3.1.1 whose proof contains
some technicalities. Since these technicalities would lengthen the proof of Theorem 3.1.1 if
we were to embark on it directly, we shall isolate the technical portion of our proof in the
following proposition. Its proof consists of rephrasing the Remmert–Stein argument relative
to a coordinate patch; see [Nar71, pp. 71–78]. We shall therefore be brief and explain in
detail only those points that differ from the proof in [Nar71].

Proposition 3.4.1. Let X = X1 × · · · × Xn and Y = Y1 × · · · × Yn, n ≥ 2, be complex
manifolds. Assume that each X j and each Yj satisfy the hypothesis of Theorem 3.1.1 and that
Y is non-compact. Further assume that, for each j, R j \ X j is a non-empty indiscrete set.
Let F : X → Y be a finite proper holomorphic map. Then, denoting z ∈ X1 × · · · × Xn as
(z1, . . . , zn), each Fi is of the form Fi (zπ(i)), where π is a permutation of {1, . . . ,n}.

In particular, if there is a mapping with the above properties from X to Y , then Y cannot have
any compact factors.

Proof. For 1 ≤ j ≤ n, let R j and Sj be as in Theorem 3.1.1. Let p = (p1, . . . ,pn) be a point
in R1 × · · · × Rn such that, for each 1 ≤ i ≤ n, pi is a limit point of the set Ri \ Xi and belongs
to ∂Xi.

Let (Uk ,ψk ) be connected holomorphic co-ordinate charts of Rk , chosen in such a way that
pi ∈ Ui and the image of (

∏n
k=1 Uk ) ∩ X under each Fj lies in some holomorphic co-ordinate

chart (Vj , ρ j ) of Sj . Let Wi be a connected component of Ui ∩ Xi such that pi ∈ ∂Wi. For
(z1, . . . , zn) ∈

∏n
k=1 ψk (Wk ), let

gj (z1, . . . , zn) := ρ j ◦ Fj (ψ−1
1 (z1), . . . ,ψ−1

n (zn)).
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In view of Corollary 3.2.4, we can rephrase the arguments in [Nar71, p. 75] to conclude:
n∏

j=1

n∑
k=1, k,i

�����
∂gj

∂zk
(z1, . . . , zi−1, w, . . . , zn)

�����
2

→ 0 as w → ζ ∈ ψi (∂Wi),

where ζ is any arbitrary point in ψi (∂Wi). Let us take D = ψi (Wi) and U = ψi (Ui) in
Lemma 3.3.8. Note that ψi (pi) ∈ U \ D, whence U \ D is indiscrete. Thus, we have that for
each (z1, . . . , zi−1, zi+1, . . . , zn) ∈

∏n
k=1,k,i ψk (Wk ), there is a j = j (z) such that

h j (z1, . . . , zi−1, w, zi+1, . . . , zn) :=
n∑

k=1, k,i

�����
∂gj

∂zk
(z1, . . . , zi−1, w, . . . , zn)

�����
2

is zero ∀w ∈ D. At this point, we can again argue exactly as in [Nar71, p. 75] to conclude
that there exists an integer σ(i),1 ≤ σ(i) ≤ n, such that

∂gσ(i)

∂zk
≡ 0 on ψ1(W1) × · · · × ψn(Wn), k = 1, . . . ,n, k , i.

Therefore on W1 × · · · × Wn, Fσ(i) is independent of z1, . . . , zi−1, zi+1, . . . , zn. By applying
the Identity Theorem, we conclude that Fσ(i) is independent of the same variables on X . By
Remmert’s Proper Mapping Theorem, F is surjective. This implies that Fσ(i) varies along Xi.
Since the choice of 1 ≤ i ≤ n in the preceding argument was arbitrary, for each i there exists
precisely one σ(i) such that Fσ(i) (z) = Fσ(i) (zi) ∀z ∈ X . The permutation π = σ−1, and we
are done with the proof of the first part.

To establish the final part of this result, assume that Ys+1, . . . ,Yn are all compact, for some
s < n. Fix an i as in the previous paragraph. The heart of the argument above, see [Nar71,
p. 75], consists of using Montel’s theorem (Corollary 3.2.4 in our present set-up) to construct
a map (φ1, . . . , φn) : Z → ∂Y , where Z :=

∏n
k=1, k,i Xk . Set E j := {z ∈ Z : φ j (z) ∈ ∂Yj}.

Clearly :
{l : 1 ≤ l ≤ n, int(El ) , ∅} ⊆ {1, . . . , s}. (3.1)

In view of (3.1), the argument in [Nar71, p. 75] reveals that, for each i,σ(i) ∈ {1, . . . , s}.
Since s < n, by assumption, there would exist i , i′ such that σ(i) = σ(i′). But this would
contradict the surjectivity of F, and we are done.

�

The proof of Theorem 3.1.1. For 1 ≤ j ≤ n, let R j and Sj be the compact Riemann surfaces
in the statement of the theorem. We start off with a simple consequence of the finiteness of
F.

Claim A: For any holomorphic finite map F : X → Y, given any Xi,1 ≤ i ≤ n, there is some
Fj that varies along Xi.
To see this, assume that there is a factor Xi such that all the Fj’s are independent of Xi. Then
for any point x = (x1, . . . , xn) ∈ X , by Definition 3.3.2, the inverse image of F (x) contains
the set {x1} × · · · {xi−1} × Xi × {xi+1} × · · · {xn}. But this contradicts the finiteness of F.
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3 Proper holomorphic mappings of hyperbolic product manifolds

Let XC and YC denote the product of those factors of X and Y , respectively, that are either
compact, or compact with finitely many punctures, and let XB and YB denote the product of
the remaining factors. Since Proposition 3.4.1 already establishes our theorem if XC = ∅, we
may assume, without loss of generality, that XC := X1 × . . . × Xp, 1 ≤ p ≤ n. Note that if
XC = ∅ and there exists a proper holomorphic map F : X → Y , then Y cannot be compact.

Claim B: The maps Fi are independent of X1, . . . ,Xp, whenever Si \ Yi is a non-empty indis-
crete set.
To see this, fix x′ ∈ X2 × · · · × Xn. The map Fi (·, x′) is a holomorphic map from X1 into
a hyperbolically imbedded Riemann surface. Now, R1 is the compact Riemann surface from
which X1 is obtained by deleting at most finitely many points. From Result 3.3.6, it follows
that Fi (·, x′) extends holomorphically to a map f̃i from R1 into Si. If f̃i is non-constant,
then by the compactness of R1, it follows that the image set of R1 under f̃i is both compact
and open. But, this means that Si = f̃i (R1), which is not possible as Si \ Yi is a non-empty
indiscrete set, and f̃i (R1) is obtained by adjoining at most finitely many points to Yi. This
proves that Fi is independent of X1. Repeating the same argument for the factors X2, . . . ,Xp,
the claim is proved.

Now note that, in view of Claim B, if 1 ≤ i ≤ p and Fj is a map that varies along Xi, then
Yj is either compact, or compact with finitely many punctures. Then, by Lemma 3.3.3, Fj is
independent of all the factors of X other than Xi. Without loss of generality, we may assume
that YC = Y1 × . . .Yk , 1 ≤ k ≤ n. Combining our last deduction with Claim A, we infer that:

1. p ≤ k ≤ n;

2. Without loss of generality, there is an enumeration of the factors of YC such that for each
1 ≤ i ≤ p, there is a unique σ(i), 1 ≤ σ(i) ≤ p, such that Fσ(i) (z) = Fσ(i) (zi) ∀z ∈ X .

Suppose k > p. Then, in view of the (harmless) assumption in (2), we need to ana-
lyze the behaviour of Fi, p + 1 ≤ i ≤ k. Note that we already know from Claim B that
Fk+1, . . . ,Fn is independent of XC . Assume that Fp+1 varies along some Xi,1 ≤ i ≤ p; then
from Lemma 3.3.3, Fp+1 is independent of all other factors of X . From Remmert’s Proper
Mapping Theorem (Result 3.3.4), F is a surjective map from X onto Y . Hence, combin-
ing the last two assertions with (2), (F1, . . . ,Fp+1) determines a surjective holomorphic map
(F1, . . . ,Fp+1) : XC → Y1 × · · · × Yp+1 from a space of dimension p to a space of dimension
p+1, which contradicts Sard’s theorem. Hence, Fp+1 is independent of X1, . . . ,Xp. Repeating
the same argument for each map Fj , p + 1 ≤ j ≤ k, we conclude that each Fj , p + 1 ≤ j ≤ n,
is independent of XC .

Whether or not k > p, the previous paragraph implies that Fi, p + 1 ≤ i ≤ n, are in-
dependent of XC , whence they determine a surjective map FB = (Fp+1, . . . ,Fn) : XB →

Yp+1 × . . . × Yn. This map is clearly finite. We will now show that it is proper. Consider a
compact set K ⊆ Yp+1 × . . . × Yn. We must show that F−1

B (K ) is a compact subset of XB.
Let H ⊆ Y1 × · · · × Yp be some compact set. Then, by the properness of F, it follows that
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3.4 Proof of the main theorem

F−1(H × K ) is compact. But, given the independence of the various Fi’s from certain factors
of X ,

F−1(H × K ) = (F1, . . . ,Fp)−1(H) × F−1
B (K ).

Thus, F−1
B (K ) is compact, as required.

As XB is non-compact, and FB is a proper map, it follows that Yp+1 × · · · × Yn is also
non-compact. We now apply Proposition 3.4.1 to the map FB to get a permutation π of
{p + 1, . . . ,n} such that, for each p < i ≤ n, we have Fi (z) = Fi (zπ(i)). Juxtaposing π with
the permutation σ−1 of {1, . . . ,p}, we are done. �
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4 Proper holomorphic self-maps of
balanced domains

In this chapter, we prove that any proper holomorphic self-map of a smoothly bounded bal-
anced pseudoconvex domain of finite type in �n, n > 1, is an automorphism. Here, the
phrase “smoothly bounded” refers to a domain that is bounded and has a C∞-smooth bound-
ary. Alexander’s theorem — i.e., Theorem 1.3.1 from the introduction — is thus a special
case of this result. We first prove a proposition that gives the precise structure of the branch
locus of such a proper holomorphic mapping, assuming that it is branched. The main nov-
elty of our proof is the use of a recent result of Opshtein on the behaviour of the iterates of
holomorphic self-maps of a certain class of domains. We use the aforementioned structure
result, together with the finiteness of type, to deduce that the limit manifold for the iterates of
a branched proper holomorphic mapping is necessarily a point or a Riemann surface. This
contradicts Opshtein’s theorem. A well-known result of Pinchuk delivers the proof.

4.1 Introduction and explanatory remarks

The central result of this chapter is:

Theorem 4.1.1. Let Ω ⊂ �n, n > 1, be a smoothly bounded pseudoconvex balanced domain
of (D’Angelo) finite type. Then every proper holomorphic self mapping F : Ω → Ω is an
automorphism.

Let Ω and F be as in the above theorem. As discuseed in Section 1.5, a natural approach
to proving a theorem such as Theorem 4.1.1 is to assume that F is branched, and to use this
assumption together with the properties of Ω to reach a contradiction. To this end, we prove
the following result that establishes an important property of the branch locus of F.

Proposition 4.1.2. Let Ω ⊂ �n, n > 1, be a smoothly bounded pseudoconvex balanced
domain of (D’Angelo) finite type. Let F : Ω → Ω be a proper holomorphic mapping, and
assume that the branch locus VF := {z ∈ Ω : Jac�(F)(z) = 0} , ∅. Let X be an irreducible
component of VF . Then for each z ∈ X, the set (� · z) ∩Ω is contained in X.

We ought to point out that Proposition 4.1.2 is a hypothetical statement. If F as in Theo-
rem 4.1.1 were branched, then it would have the above structure. The thrust of our proof is
that F can never be branched.
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4 Proper holomorphic self-maps of balanced domains

As hinted at in Section 1.5, an important object in our proof is a function τ : ∂Ω →
�+ ∪ {0}, which gives the tangential order of vanishing of the Levi determinant at each
boundary point. This function was introduced by Bedford and Bell [BB82]. For the precise
meanings of the phrases “Levi determinant” and “tangential order”, we refer the reader to
Section 4.2. Another key fact that is presented in that section is that, owing to the hypothesis
that Ω is of (D’Angelo) finite type, τ is bounded on ∂Ω.

Our proof of Theorem 4.1.1 may be summarized as follows:

• We begin by assuming that F is branched.

• If z0 is a point in F−1{0} that is different from 0, it follows from Proposition 4.1.2
that (� · z0) ∩ Ω is contained in a sequence of distinct irreducible components of the
branch loci of the iterates Fk , k = 1,2,3, . . . We note that, by Lemma 2.2.5, F extends
holomorphically to a neighbourhood ofΩ, whence we may view these irreducible com-
ponents as subvarieties of some neighbourhood of Ω.

• We pick a point q ∈ (� · z0) ∩ ∂Ω. Each iterate of F must be branched at q. Using this
fact, and that q is located on distinct irreducible components of the branch loci of Fk ,
one can show — using a result of Bell [Bel84a] — that τ must be unbounded on ∂Ω.
This is impossible, whence F−1{0} = {0}.

• In particular, F fixes 0, whence there exists a limit manifold, call it M , associated to
the iterates of F. The circular symmetry of Ω makes it possible to deduce that M is the
intersection of a linear subspace of �n with Ω, and that one may assume, without loss
of generality, that F |M is given by

(z1, . . . , zm,0, . . . ,0) 7→ (eiθ1 z1, . . . ,eiθm zm,0, . . . ,0).

• If m > 1 then we can find a point p ∈ M ∩ ∂Ω that also lies in the (prolongation
of) the branch locus of F. We examine the orbit of p under the action of the group
generated by F |M . The behaviour of the function τ along this orbit contradicts the
upper semi-continuity of τ. Hence, m ≤ 1, which, however, contradicts Opshtein’s
theorem: Result 4.3.7 below.

• This proves that our assumption that F is branched must be false. The desired conclu-
sion now follows from a theorem of Pinchuk.

As discussed above, a result of Opshtein will play a fundamental role in the proof of
Theorem 4.1.1. For this reason, we will need some definitions and facts from the theory of
(iterative) dynamics of holomorphic self-maps of a domain in �n. These will be presented
in Section 4.3. The proofs of Proposition 4.1.2 and Theorem 4.1.1 will be presented in
Section 4.5.

Before, we proceed further, we clarify that, in this chapter, whenever we use use the word
“smooth”, it will refer to C∞-smoothness unless specified otherwise.
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4.2 Boundary geometry

4.2 Boundary geometry

In this section, we shall define the notions of pseudoconvexity and D’Angelo finite type. We
shall then summarize the properties of the function τ, alluded to above, that is defined on the
boundary of a smoothly bounded pseudoconvex domain. For an extensive treatment of the
notion of finite type, refer to D’Angelo’s book [D’A93]. We begin by defining the notion of
Levi pseudoconvexity.

Definition 4.2.1. Let D ⊂ �n be a bounded domain with smooth boundary, and let r be a
defining function of D. We say that D is Levi pseudoconvex if for each p ∈ ∂D we have:

n∑
j,k=1

∂2r
∂z j z̄k

(p)v j v̄k ≥ 0 ∀(v1, . . . , vn) ∈ Tp(∂D) ∩ iTp(∂D).

It is not hard to verify that the positivity condition in the above definition depends only on
p and v ∈ Tp(∂D) ∩ iTp(∂D), and not on the choice of the defining function r . We remark
that Tp(∂D) ∩ iTp(∂D) is the maximal complex subspace contained in Tp(∂D). Levi pseu-
doconvexity is the complex analogue of convexity and is preserved under biholomorphisms.

We now define the notion of D’Angelo finite type.

Definition 4.2.2. Let D ⊂ � be a domain, and let f : D → � be a smooth function. We define
the multiplicity of f at p ∈ D to be the least positive integer k such that the homogeneous
polynomial in (z−p) and (z−p) of degree k in the Taylor expansion of ( f − f (p)) around p is
not identically zero, defining it to be +∞ if no such k exists. The multiplicity of a �n-valued
function is defined to be the minimum of the multiplicities of its components. We denote the
multiplicity of a function f at a point p by vp( f ).

Definition 4.2.3 (D’Angelo). Let M ⊂ �n be a smooth real hypersurface, and let p ∈ M . Let
r be a defining function for M in some neighbourhood of the point p. We say that p is a point
of finite type (also known as finite 1-type) if there is a constant C > 0 such that

v0(r ◦ φ)
v0(φ)

≤ C,

whenever φ : �→ �n is a non-constant analytic disk such that φ(0) = p.

As in the case of Definition 4.2.1 — and exactly for the same reasons — the above defini-
tion is independent of the choice of the defining function r . In the sequel, whenever we say
that a domain is of finite type, we shall mean finite type in the sense of the above definition.

We now define a function τ on the boundary of any smoothly bounded pseudoconvex
domain. This function was introduced by Bedford and Bell [BB82], and has been used
successfully in the study of branching behaviour of proper holomorphic mappings. It is used
multiple times in our proof of Theorem 4.1.1
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4 Proper holomorphic self-maps of balanced domains

Definition 4.2.4. Let D ⊂ �n be a smoothly bounded pseudoconvex domain and r a smooth
defining function for D. Define

Λr := det
[

0 rzi
rz j rzi z j

]n

i,j=1
,

the determinant of the Levi-form of r (for a justification of this terminology, see [DK99,
Section 2]). For p ∈ ∂D, we define τ(p) to be the smallest non-negative integer m such that
there is a tangential differential operator T of order m on ∂D such that TΛr (p) , 0.

Remark 4.2.5. As any other defining function r′ can be written as h · r , where h is a positive
smooth function defined on some neighbourhood U of the boundary point p, we see that
the number τ(p) is independent of the choice of r . Note that by the pseudoconvexity of D,
Λr (p) ≥ 0 ∀p ∈ ∂D, and Λr (p) = 0 if and only if p is a point of weak pseudoconvexity.

Remark 4.2.6. Note that τ is an upper semi-continuous function. To see this, observe that for
q ∈ ∂D, the set {p ∈ ∂D : τ(p) < τ(q)} is open, as its complement⋂

T

{p ∈ ∂D : TΛr (p) = 0},
where the intersection is over all tangential differential operators of order less than τ(q), is a
closed set.

Suppose f : D1 → D2 is a proper holomorphic mapping between bounded pseudoconvex
domains with C∞-smooth boundaries that extends smoothly to a ∂D1-open neighbourhood
of a point p ∈ ∂D1. Let ρ be a defining function for D2 such that ρ ◦ f is a local defining
function for ∂D1 near p (see [Bed84, Remark 2]). It follows that

Λρ◦ f (z) = |Jac�( f )(z) |2Λρ( f (z)),

from which the next result is straightforward to prove.

Result 4.2.7 (Bell [Bel84a]). Given a proper holomorphic mapping g : D1 → D2 between
bounded pseudoconvex domains in �n, n > 1, with smooth boundaries, if g extends smoothly
to ∂D1 in a neighbourhood of p ∈ ∂D1, then τ(p) ≥ τ(g(p)), and when τ(p) , ∞, the
following are equivalent :

(i) τ(p) = τ(g(p));

(ii) g extends to a local diffeomorphism at p;

(iii) p < V g.

Here, Vg denotes the branch locus, i.e., Vg := {z ∈ D1 : Jac�(g)(z) = 0}, of g.
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4.2 Boundary geometry

Let us establish the following notation that we shall use in the remainder of this chapter.
Given any open set D ⊂ �n and a holomorphic map f : D → �n, Vf will be defined as:

Vf := {z ∈ D : Jac�( f )(z) = 0}.
The next two results give an idea as to why the τ function is relevant to our main theorem.

Let D ⊂ �n be a smoothly bounded pseudoconvex domain that is of finite type in the
sense of D’Angelo and let p = (p1, . . . ,pn) ∈ ∂D. From this, it can be argued that τ(p)
is finite. As the D’Angelo 1-type of p is finite, if we pick a non-zero vector (v1, . . . , vn) ∈
Tp(∂D) ∩ iTp(∂D), then there exists a k ∈ �+ such that the homogeneous polynomial of
degree k in the Taylor expansion of r ◦ φ around 0 ∈ � is not identically zero, where r here
is a defining function of D and φ is the analytic disc

φ : ζ 7−→ (p1 + v1ζ,p2 + v2ζ, . . . ,pn + vnζ ).

One can show from this that, for an appropriate choice of a vector V i j ∈ Tp(∂D) ∩ iTp(∂D),
there is a tangential differential operator T i j of order ≤ (k − 2) such that T i j applied to the
(i, j)-th entry of the Levi matrix does not evaluate to 0 at p. However, finding a single finite-
order tangential differential operator T such that TΛr (p) , 0 is quite technical. We could not
find an elementary proof of Result 4.2.8 (see below) in the literature, although it has been
made use of a number of times; see, for instance, [Pan91]. The main result of a recent work
of Nicoara [Nic12, Main Theorem 1.1] provides an effective upper bound for τ in terms of the
D’Angelo 1-type. For the purposes of this chapter, the following consequence of Nicoara’s
result suffices:

Result 4.2.8. Let D ⊂ �n be a smoothly bounded pseudoconvex domain that is of finite type
in the sense of D’Angelo. Then there is an m ∈ �+ such that τ(p) ≤ m ∀p ∈ ∂D.

The next result is by Coupet, Pan and Sukhov [CPS01]. The result, and its proof, is
sufficiently important for our purposes that we provide a proof of it.

Lemma 4.2.9 ([CPS01]). Let Ω ⊂ �n, n > 1, be a bounded pseudoconvex domain with
C∞-smooth boundary that is also of finite type. Let F : Ω → Ω be a proper holomorphic
mapping. Assume that F extends smoothly to ∂Ω. If VF , ∅, then for each ν ∈ �+, there
exists an irreducible component Lν of VFν such that Li , L j , i , j, and

Lν+1 ⊂ F−1(Lν) ∀ν ∈ �+.

Remark 4.2.10. Since Ω is pseudoconvex and of finite type, the assumption that F extends
smoothly to ∂Ω is actually redundant, in view of the main result in [Cat87] together with
[BC82] or [DF82]. However, even if these results had been unavailable, this assumption
would not have been a hindrance owing to Lemma 2.2.5.
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4 Proper holomorphic self-maps of balanced domains

Proof. It is elementary to see that VFν+1 ⊃ F−1(VFν ). Let L1 be some irreducible component
of VF . Let L2 be some irreducible component of F−1(L1). Similarly, assume that L1, . . . ,Lk

have been chosen such that L j is some irreducible component of F−1(VF j−1 ),1 ≤ j ≤ k.
Then, we may simply take Lk+1 to be an irreducible component of F−1(Lk ). Note that the
restriction of F to each Lν+1 is proper, and consequently F (Lν+1) = Lν. We now show that
this procedure ensures that Lν+1 , L j ∀ j ≤ ν, ν = 1,2,3, . . . Suppose not, and let m be the
smallest positive integer such that Lm = Lm+p for some positive integer p. If m > 1, then
F (Lm) = F (Lm+p), and so Lm−1 = Lm+p−1, contradicting the definition of m. So, m = 1 and
L1 = L1+p. Since Fp(L1+p) = L1, we have Fp(L1) = L1. As L1 ⊂ VFp , for any q ∈ L1∩ ∂Ω,
we see, by Result 4.2.7, that

· · · τ(Fkp(q)) < τ(F (k−1)p(q)) < · · · < τ(q) < ∞. (4.1)

This, in view of Result 4.2.8, contradicts the finite-type hypothesis on ∂Ω.
�

4.3 Dynamics of holomorphic mappings

In this section we summarize some material from the theory of (iterative) dynamics of holo-
morphic self-maps of a taut manifold. A reference for the material in this section is [Aba89].
Given complex manifolds X and Y , Hol(X,Y ) will denote the space of holomorphic map-
pings from X and Y , where the topology on Hol(X,Y ) is the compact-open topology. We are
interested in the set Γ( f ) which is defined to be the set of all limit points of the iterates of a
holomorphic mapping f ∈ Hol(X,X ), where X is a taut complex manifold. Of course, Γ( f )
might be empty. The following result describes the possible behaviours of the iterates.

Result 4.3.1 ([Aba89], Chapter 2.1). Let X be a taut manifold, and f ∈ Hol(X,X ). Then
either the sequence { f k} of iterates of f is compactly divergent, or there exists a complex
submanifold M of X and a holomorphic retraction ρ : X → M (i.e., ρ2 = ρ) such that every
limit point h ∈ Hol(X,X ) of { f k} is of the form h = γ ◦ ρ, where γ is an automorphism of
M. Moreover,

1. even ρ is a limit point of the sequence { f k},

2. f (M) ⊂ M, and f |M is an automorphism of M.

Note that for a holomorphic retraction ρ : X → M as above, the fixed point set of ρ,
Fix(ρ) = M . The next result shows that the fixed point set of a holomorphic self-map of a
bounded domain in �n is a complex submanifold.

38



4.3 Dynamics of holomorphic mappings

Result 4.3.2 (Vigué [Vig86, Vig90]). Let D be a bounded domain in �n, n ≥ 2, and let
f : D → D be a holomorphic mapping. Then Fix( f ) is a complex submanifold of D. If
a ∈ Fix( f ), its complex tangent space at a is given by

{v ∈ �n : f ′(a)v = v}
Definition 4.3.3. With the notation as in Result 4.3.1, we say that f is non-recurrent if the
sequence { f k} of iterates of f is compactly divergent. Otherwise, we say that f is recurrent,
and we call the map ρ the limit retraction, and the manifold M the limit manifold.

The behaviour of the iterates of a holomorphic self-map of a taut manifold X depends on
whether f has a fixed point or not. The following theorem known as the Cartan-Carathéodory
theorem gives a quantitative description of the behaviour of the differential f ′ at a fixed point
of f ; see [Aba89, Theorem 2.1.21] for a proof.

Result 4.3.4. Let X be a taut complex manifold, and let f ∈ Hol(X,X ) have some fixed point
z0 ∈ X. Then

1. the spectrum of f ′(z0) is contained in �;

2. |Jac�( f )(z0) | = 1 if and only if f is an automorphism;

3. Tz0 X admits a f ′(z0)-invariant splitting Tz0 X = LN ⊕ LU such that the spectrum
of f ′(z0) |LN is contained in �, the spectrum of f ′(z0) |LU is contained in ∂D and
f ′(z0) |LU is diagonalizable.

The space LU is called the unitary space of f at z0. The above theorem can be used to
give more information about the limit manifold of f at the fixed point; see [Aba89, Corol-
lary 2.1.30] for a proof.

Result 4.3.5. Let X be a taut manifold, and let f ∈ Hol(X,X ) be such that f (z0) = z0 for
some z0 ∈ X. Then the unitary space of f at z0 is the tangent space at z0 of the limit manifold
of f .

The next result gives quite precise information about the set Γ( f ); see [Aba89, Corol-
lary 2.4.4] for a proof.

Result 4.3.6. Let X be a taut manifold, and let f ∈ Hol(X,X ) be recurrent with limit retrac-
tion ρ : X → M. Then Γ( f ) is isomorphic to a compact abelian subgroup of Aut(M), which
is the closed subgroup generated by f |M ∈ Aut(M).

We point out that Result 4.3.1 guarantees that f |M is an automorphism of M .

We now state one of the main results in [Ops06]. This result is used in the final step in our
proof of the main theorem. The result considers a slight generalization of a class of domains
introduced by Sibony called B-regular domains. Refer to [Sib91b, Sib91a], and references
therein, for a precise definition and related results.
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4 Proper holomorphic self-maps of balanced domains

Result 4.3.7 ([Ops06], Théorème A and Remarque 30). Let D ⊂ �n, n ≥ 2 be a smoothly
bounded pseudoconvex domain whose boundary is B-regular. Let f : D → D be a proper
holomorphic self-map that is recurrent. Then the limit manifold of f is necessarily of dimen-
sion higher than 1.

Remark 4.3.8. The notion of B-regularity is somewhat technical, whence we shall not define
it here. The fact that is relevant to this chapter is that smoothly bounded pseudoconvex
domains of finite type are B-regular. See [Sib91b, Section 2] for more on this matter.

Remark 4.3.9. In Opshtein’s paper, [Ops06], Result 4.3.7 is actually stated for domains that
admit a global smooth p.s.h. defining function at the boundary. For a proof that the result is
also true for B-regular domains, refer to the Ph.D. thesis of Opshtein which, at the time of
writing, is available at his homepage [Ops].

4.4 Some essential propositions

We begin with a simple application of the material in Section 2.3. This proposition has
already been obtained by Vesentini in the more general context of reflexive Banach spaces.
We use his techniques to give a simple proof in our special case.

Proposition 4.4.1. Let D ⊂ �n be a bounded, balanced pseudoconvex domain, all of whose
boundary points are holomorphically extreme. Let ρ : D → D be a holomorphic retraction
such that ρ(0) = 0. Then M := ρ(D) = D ∩ V, where

V := {v ∈ �n : ρ′(0)v = v}.
We remind the reader that we use the term “holomorphically extreme” here in the sense of
Definition 2.3.2.

Proof. From Result 4.3.2, it follows that M is a connected complex submanifold of D whose
complex tangent space at 0 is V . Let v ∈ V ∩D, v , 0. From Result 2.3.4 and our assumption
on ∂D, it follows that the mapping

φ : � 3 λ 7−→ λv/MD (v ) ∈ D

is the unique (modulo Aut(�)) κD-geodesic for (0, v/MD (v )). Note that

κD (ρ ◦ φ(0); (ρ ◦ φ)′(0)) = κD (0; v/MD (v )) = κD (φ(0); v/MD (v )),

whence ρ ◦ φ is also a κD-geodesic for (0, v/MD (v )). By uniqueness, it follows that ρ ◦ φ =

φ ◦ ψ, where ψ ∈ Aut(�). But ρ ◦ φ(0) = 0, (ρ ◦ φ)′(0) = v/MD (v ), and therefore by the
Schwarz lemma, we must have ρ ◦ φ = φ. In particular, φ(MD (v )) = ρ ◦ φ(MD (v )), whence
v = ρ(v ) ∈ M . This proves that V ∩ D ⊂ M . Note that V and M have the same complex
dimension. Since, by Result 4.3.2, M is connected, it follows from the principle of analytic
continuation that M = D ∩ V . �
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4.5 Proofs of Proposition 4.1.2 and Theorem 4.1.1

We will now prove a lemma regarding analytic disks lying in a pseudoconvex domain of
finite type. The boundary of such a domain cannot contain any non-trivial germs of analytic
disks. The following Lemma shows that one can say more.

Lemma 4.4.2. Let D ⊂ �n, n ≥ 2, be a smoothly bounded pseudoconvex domain of finite
type. Let ψ : �→ D be a holomorphic map such that ψ(�) ∩ ∂D , ∅. Then ψ is constant

Proof. Let p ∈ ψ(�) ∩ ∂D. Let us fix a defining function ρ for D, ρ ∈ C∞(U), where U is a
neighbourhood of D, such that |∇ρ(w) | = 1 ∀w ∈ ∂D. Let us write, for any ε,r > 0:

n̂ := ∇ρ(p), the unit outward normal to ∂D at p,

W (r, ε) := B(p,r) ∩ {w ∈ D : ρ(w) > −ε}.
Let r0 and ε0 be so small that ∀w ∈ W (r0, ε0), ∀ε ∈ (0, ε0), the line segment [w−εn̂, w] ⊂ U,
and ρ−1{−ε} is a hypersurface. By Taylor’s theorem:

ρ(w − εn̂) = −ε∇ρ(w) · n̂ + O(ε2) ∀w ∈ W (r0, ε0), ∀ε ∈ (0, ε0), (4.2)

where, for vectors A,B, A · B denotes the standard inner product on �2n. We can assume
that ε0,r0 > 0 are so chosen that ρ(w) · n̂ > 1/2 ∀w ∈ W (r0, ε0). By (4.2), we can find an
ε1 ∈ (0, ε0) so small that

ρ(w − εn̂) < 0 ∀w ∈ W (r0, ε1), ∀ε ∈ (0, ε1). (4.3)

Let G := W (r0, ε1). Clearly, by (4.3), G − tn̂ ⊂ D ∀t ∈ (0, ε1).
Let ζ ∈ ψ−1{p}. There is an open neighbourhood N of ζ, N ⊂ �, such that ψ(N ) ⊂

G ∪ ∂D. Now, define the maps φt ∈ O(N ; D) by

φt (z) := ψ |N (z) − tn̂, t ∈ (0, ε1);

it is by the conclusion of the argument in the last paragraph that we see that φt (N ) ⊂ D ∀t ∈
(0, ε1). By construction

φt −→ ψ |N uniformly as t → 0+.

Now, as D is smoothly bounded and pseudoconvex, it is taut, whence, as p ∈ ψ(N ) ∩ ∂D,
it follows that ψ(N ) ⊂ ∂D. As D is of finite type, it cannot contain any germs of analytic
varieties of positive dimension. Hence, ψ |N is a constant, whence the result. �

4.5 Proofs of Proposition 4.1.2 and Theorem 4.1.1

If we assume that the map F : Ω → Ω, as stated in Theorem 4.1.1 is branched, then our
assumptions on the geometry of Ω gives us a structural result for the branch locus VF of F.
We begin with the proof of this result — i.e., Proposition 4.1.2.

A comment about notation: in what follows, dimH (S) will denote the Hausdorff dimension
of the set S ⊂ �n.
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4 Proper holomorphic self-maps of balanced domains

The proof of Proposition 4.1.2. Let X1, . . . ,Xm be the distinct irreducible components of the
variety VF . By Lemma 2.2.5, F extends holomorphically to a neighbourhood N ofΩ. For the
moment, let F̃ denote this extension. It is possible that there exists an irreducible component
Y of Jac�(F̃)−1{0} such that X j ,Xk ⊂ Y, j , k. However, it is a basic fact that there exists
a domain Ω′ c Ω such that the irreducible components of (Jac�(F̃))−1{0} are in one-to-one
correspondence with {X1, . . . ,Xm}. For this reason, we shall not use different symbols for
F : Ω → Ω and its extension F̃, or for X1, . . . ,XM and their respective prolongations across
∂Ω. We first need the following lemma:

Lemma 4.5.1. Let X be an arbitrary irreducible component of the variety VF , viewed as a
subvariety of a domain Ω′ c Ω that has the property that the irreducible components of VF

are in one-to-one correspondence with those of (Jac�(F) |Ω)−1{0}. Let E := ∂Ω ∩ X. There
exists a closed, nowhere dense (relative to E) subset E ⊂ E such that, for each p ∈ E \ E,
there exists a connected neighbourhood Np 3 p such that

dimH (E ∩ Np) ≥ 2n − 3.

Proof. Let S denote the subvariety of singular points of X and set

E := ∂Ω ∩ S.

Pick a point p ∈ E \ E. By definition, ∃rp > 0 such that B(p,rp) ∩ E = ∅ and X ∩ B(p,rp)
is a complex submanifold of B(p,rp).

Claim: For each r ∈ (0,rp), (X \Ω) ∩ B(p,r) , ∅.
Assume this is false. Then, ∃r ∈ (0,rp) such that X ∩ B(p,r) ⊂ Ω. This implies that there
exists a non-constant holomorphic map ψ : � → �n such that ψ(�) ⊂ X ∩ B(p,r) ∩ Ω and
ψ(�) ∩ ∂Ω , ∅. But this is impossible by Lemma 4.4.2. Hence the claim.

Now, let r∗p ∈ (0,rp) be so so small that B(p,r∗p) \ ∂Ω has exactly two connected compo-
nents (possible as ∂Ω is an imbedded smooth submanifold),

B(p,r∗p) \ ∂Ω = C+ t C−.

By our above claim, C± ∩ X , ∅. Thus ∂Ω ∩ X ∩ B(p,r∗p) disconnects the manifold X ∩
B(p,r∗p).

In what follows, dimI will denote the inductive dimension. The precise definition is rather
involved and we refer the reader to [HW41, Chapters II and III]. The fact that we need is
Corollary 1 to [HW41, Theorem IV.4]: since ∂Ω ∩ X ∩ B(p,r∗p) disconnects X ∩ B(p,r∗p)

dimI (∂Ω ∩ X ∩ B(p,r∗p)) ≥ dim�(X ∩ B(p,r∗p)) − 1 = 2n − 3. (4.4)

It is well-known that the Hausdorff dimension dominates the inductive dimension; see for
instance [HW41, Chapter VII, §4]. By (4.4), therefore, writing Np := B(p,r∗p),

dimH (Np ∩ E) ≥ 2n − 3.

The set E has all the properties stated in the lemma, and we are done. �

42



4.5 Proofs of Proposition 4.1.2 and Theorem 4.1.1

Let us fix a point z0 ∈ E for the moment. From Result 4.2.7, all the points of E are
necessarily weakly pseudoconvex. Note that τ(eiθ z0) = τ(z0). From the fact that τ is upper
semi-continuous, it follows that the set {w ∈ ∂Ω : τ(w) < τ(F (z0)) + 1} is open in ∂Ω, and
consequently so is its inverse image under F, {z ∈ ∂Ω : τ(F (z)) < τ(F (z0)) + 1}. The latter
set obviously contains z0. This implies that for θ close to 0, we must have τ(F (eiθ z0)) ≤
τ(F (z0)) < τ(z0) = τ(eiθ z0) which, by Result 4.2.7, implies that for θ close to 0, we have
eiθ z0 ∈ VF . Restricting Jac�(F) to the set � · z0, and observing that the boundary-values of
this restriction vanishes on an arc of ∂�, we see that Jac�(F) must vanish on the set � · z0.
As z0 ∈ E was arbitrary, we get that for each z ∈ E, � · z ⊂ Xi, for some i. Let us define

Ei := {w ∈ E : � · w ⊂ Xi}, i = 1, . . . ,m.

Since, by Lemma 4.5.1, E is of Hausdorff dimension at least 2n−3, there is an i0,1 ≤ i0 ≤ m,
such that dimH (Ei0 ) ≥ 2n − 3. Let us call this set E′. Then:⋃

z∈E′
� · z ⊂ Xi0 .

As X and Xi0 are irreducible varieties whose intersection is of Hausdorff dimension at least
2n − 3, it must be that X = Xi0 .

We have proved that ⋃
z∈E′

� · z ⊂ X. (4.5)

Now fix λ ∈ �, and consider the holomorphic function hλ (z) := Jac�(F)(λz) defined on
X . From what we have shown, (4.5) in particular, hλ vanishes on a subset of Hausdorff
dimension at least 2n − 3 of the irreducible variety X . Hence hλ must vanish identically on
X , and this is true for each λ ∈ �. Thus, we have shown that, given z ∈ X , (� · z) ∩Ω ⊂ VF .
Since VF comprises finitely many irreducible components, by a similar argument as in the
previous paragraph (with the role of E now taken by X), we actually have (� · z) ∩ Ω ⊂ X .
By analytic continuation, it follows that if z ∈ X , then (� · z) ∩Ω ⊂ X . �

We now have all the tools needed to prove our main theorem.

The proof of Theorem 4.1.1. By Theorem 1.3.3, it suffices to prove that F is unbranched.
So we will assume that F is branched and reach a contradiction. We will not, hereafter,
remark upon the well-definedness of quantities such as Jac�(F)(p) for p ∈ ∂Ω. In view of
Lemma 2.2.5, this is indeed well-defined.

Step 1. Proving that F−1{0} = {0}. If not, there is point 0 , z0 ∈ Ω such that F (z0) = 0.
From Lemma 4.2.9, we have distinct irreducible varieties Li ⊂ VF i such that F |Li+1 : Li+1 →

Li is a proper holomorphic mapping. Moreover, from the manner in which we select the Li’s
in the proof of that lemma and from the structure of the Li’s as given by Proposition 4.1.2,
it is clear that we can select the Li’s in such a manner that z0 ∈ Li ∀i > 1. To be specific:
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4 Proper holomorphic self-maps of balanced domains

having found L1, . . . ,Li with the last property, it follows from Proposition 4.1.2 that zo would
belong to some irreducible component of F−1(Li), which we choose as Li+1. Again from
Proposition 4.1.2, it follows that Λ := (� · z0) ∩ Ω ⊂ Li ∀i > 1. This means that the sets
Fk (Λ) ⊂ L2,∀k ∈ �+. Let q ∈ (� · z0) ∩Ω = Λ \ Λ. It is elementary that

VFn =

n−1⋃
k=0

(Fk )−1(VF ), n ∈ �+,

with the understanding that F0 = idΩ. Thus — we refer to the recipe for the Li’s in Lemma
4.2.9 — L2 ⊂ VF2k∀k ∈ �+. Note that q ∈ L2 \ L2. At this stage, we are precisely in the
situation prior to (4.1) in the proof of Lemma 4.2.9, except that q belongs to (the prolongation
of) the branch locus of F2. Therefore, it follows as in the proof of Lemma 4.2.9 (taking p = 2
in the relevant argument), that

· · · < τ(F2k (q)) < · · · < τ(F4(q)) < τ(F2(q)) < τ(q) < ∞,

which contradicts the fact that Ω is pseudoconvex and of finite type (Result 4.2.8). Our claim
follows.

We note, though we shall not make use of it in what follows, that by Theorem 1.2.9, it
follows that F is a polynomial mapping.

Step 2. Analyzing F on its limit manifold. As 0 is a fixed point of F, it follows that F
is recurrent. Let ρ : Ω → M be the limit retraction. As Ω is pseudoconvex and of finite
type, it follows from Lemma 4.4.2 that every point in ∂Ω is holomorphically extreme, and
consequently from Proposition 4.4.1 and Result 4.3.5, it follows that M = LU ∩ Ω, where
LU is the unitary space of F at 0. Recall that F′(0) |LU is diagonalizable; see Result 4.3.5.
Thus, without loss of generality (replacing Ω by a suitable linear image and conjugating F
by a suitable linear operator, if necessary), we may assume that LU = �m × {0�n−m}, and
that F′(0) |LU is given by

(z1, z2, . . . , zm,0, . . . ,0) 7→ (eiθ1 z1,eiθ2 z2, . . . ,eiθm zm,0, . . . ,0). (4.6)

By Cartan’s uniqueness theorem, it also follows that F |M ≡ F′(0) |M .

Step 3. Proving that dim M ≤ 1. Suppose dim M > 1. From the previous steps, we have
that 0 ∈ VF ∩ M . Therefore the set {z ∈ M : Jac�(F)(z) = 0} is a non-empty analytic
subvariety of M . As dim M > 1, it follows that there exists a point p ∈ M ∩ ∂Ω such that
Jac�(F)(p) = 0.

From Result 4.3.6, the set Γ(F) comprising of the various limit points of F in Hol(Ω,Ω) is
isomorphic to a compact abelian subgroup of Aut(M), and in fact

Γ(F) � {Fk |M : k ∈ �}.
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This means that there is a strictly increasing sequence {nk} ⊂ � such that Fnk |M → F−1 |M

in Aut(M). But the maps Fk |M , k ∈ �, are all of the special form (4.6), and consequently
Fnk |M → F−1 |M uniformly on M . Therefore, we must have F−nk |M → F |M uniformly on
M . Let pk := F−nk |M (p). By Result 4.2.7, it follows that τ(pk+1) ≥ τ(pk ) ≥ τ(p). But,
pk → F (p), and as p ∈ V F , τ(F (p)) < τ(p), which means that

lim sup
k→∞

τ(pk ) ≥ τ(p) > τ(F (p)),

which contradicts the fact that τ is upper semi-continuous. This proves that dim(M) ≤ 1.

The conclusion of Step 3 is in conflict with the conclusion of Opshtein’s theorem, i.e.,
Result 4.3.7. Therefore, F is unbranched, and Theorem 1.3.3 proves that F is an automor-
phism. �
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5 Proper holomorphic maps between
bounded symmetric domains

In this chapter, we prove that a proper holomorphic map between two non-planar bounded
symmetric domains of the same dimension, one of them being irreducible, is a biholomor-
phism. Our methods allow us to give a single, all-encompassing argument that unifies the
various special cases in which this result is known. We discuss an application of these meth-
ods to domains having non-compact automorphism groups that are not assumed to act tran-
sitively.

Most of the material presented below also appears in the paper [BJ13].

5.1 Introduction and explanatory remarks

The main result of this chapter is the following:

Theorem 5.1.1. Let D1 and D2 be two bounded symmetric domains of complex dimension
n ≥ 2. Assume that either D1 or D2 is irreducible. Then, any proper holomorphic mapping
of D1 into D2 is a biholomorphism.

As we had mentioned briefly in Section 1.4, our proof relies on the fact that any bounded
symmetric domain D ⊂ �n has a special realization (i.e., the Harish-Chandra realization) as
the unit ball of �n under some �-norm . This special realization allows us to:

a) Define a triple product on �n that makes �n into a Jordan triple system, which allows
us to give a description of the boundary geometry of a bounded symmetric domain
along the lines alluded to in Section 1.5;

b) Adapt some aspects of Alexander’s proof: specifically, those aspects that rely on the
unit Euclidean ball being a convex balanced domain.

Before proceeding further, we point out that the Bergman metric associated to a bounded
symmetric domain is geodesically complete. From this it follows easily that a bounded sym-
metric domain is homogeneous: the symmetry associated to the mid-point of a geodesic
joining two given points interchanges the two points.
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5 Proper holomorphic maps between bounded symmetric domains

We will now present a brief outline of the proof of Theorem 5.1.1. An important lemma
used in our proof is the Key Lemma below, which is reminiscent of a lemma of Rudin used
by him to give a somewhat different proof ([Rud08, Chapter 15]) of Alexander’s theorem.

Key Lemma 5.1.2. Let D be a realization of an irreducible bounded symmetric domain
of dimension n ≥ 2 as a bounded convex balanced domain in �n. For z ∈ D \ {0}, let
∆z := {ζ z : ζ ∈ � and ζ z ∈ D}. Let W1 and W2 be two regions in D such that 0 ∈ W1 ∩W2

and let F : D → D be a holomorphic map. Assume that:

(i) F maps W1 biholomorphically onto W2 with F (0) = 0.

(ii) There exists a non-empty open set U ⊂ W1 \ {0} such that, for each z ∈ U, ∆z ⊂ W1

and ∆F (z) ⊂ W2.

Then, F is an automorphism of D.

This is a consequence of Vigué’s Schwarz lemma [Vig91] (Result 5.4.4 below), and the
irreducibility of D is essential to this lemma. The definition of irreducibility is a negative
one and is not very useful, without the use of any additional machinery, for proving results
about irreducible domains. The machinery of Jordan triple systems gives us a convenient
description of the boundary of an irreducible bounded symmetric domain — see Result 5.3.3
below — which is used crucially in the proof of Vigué’s Schwarz lemma.

Our proof of Theorem 5.1.1 may be summarized as follows (we will assume here that D1

and D2 are Harish-Chandra realizations of the domains in question):

• By a consequence of a result of Bell (Lemma 2.2.5), F extends to a neighbourhood of
D1 and we can find a point p in the Shilov boundary of D1, and a small ball B around
it, such that F |B is a biholomorphism.

• We may assume that F (0) = 0. Let {ak} be a sequence in D1 ∩ B converging to p and
let bk := F (ak ). Let φ j

k ∈ Aut(D j ) be an automorphism that maps 0 to ak if j = 1, and
to bk if j = 2. It turns out that both p and F (p) are peak points, whence φ j

k −→ p( j)

uniformly on compact subsets, where p(1) := p and p(2) := F (p).

• Using the Schwarz lemma for convex balanced domains (Result 5.4.3 below) we show
that a subsequence of {(φ2

j )
−1 ◦ F ◦ φ1

j} converges to a linear map and that, owing to
the tautness of D1 and D2, this map is a biholomorphism of D1 onto D2.

• We may now take D1 = D2 = D. We shall use Lemma 5.1.2 with W1 = (φ1
k )−1(D∩B)

and W2 = (φ2
k )−1(D ∩ F (B)) for k sufficiently large.

• Since the analytic discs ∆z and ∆F (z) are not relatively compact in D, the mode of
convergence of {φ j

k} isn’t a priori good enough to infer that appropriate families of
these discs will be swallowed up by W j , j = 1,2. By Bell’s theorem, each φ j

k extends
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to some neighbourhood of D. As we had mentioned at the end of Section 1.5, we have
expressions for φ j

k that are explicit enough to give estimates on φk
j that are independent

of k. This estimate can be used to show that {φ j
k}, passing to a subsequence and

relabelling, if necessary, converges uniformly on certain special special circular subsets
of D that are adherent to ∂D. This is enough to overcome the difficulty just described.

We now come to the second main result of this chapter, obtained in collaboration with
Gautam Bharali. The methods outlined above have the advantage that they do not rely on
the fine structure of bounded symmetric domains. This allowed us to generalize some of the
methods outlined above assuming only that the automorphism group of D1 is non-compact.
We do, however, assume that D1 is convex and balanced. One can, in fact, prove a version of
Theorem 5.1.3 that requires D1 merely to be Kobayashi hyperbolic. However, in this case,
the biholomorphism of D1 onto D2 will not, in general, be linear. We prefer the version
below: the conclusion that there exists a linear equivalence places Theorem 5.1.3 among the
rigidity theorems alluded to in Remark 1.5.9.

Theorem 5.1.3. Let D1 be a bounded convex balanced domain in �n whose automorphism
group is non-compact and let p be a boundary orbit-accumulation point. Let D2 be a realiza-
tion of a bounded symmetric domain as a bounded convex balanced domain in �n. Assume
that there is a neighbourhood U of p and a biholomorphic map F : U → �n such that
F (U ∩ D1) ⊂ D2 and F (U ∩ ∂D1) ⊂ ∂D2. Assume that either p or F (p) is a peak point.
Then, there exists a linear map that maps D1 biholomorphically onto D2.

The layout of this chapter is as follows. Since Jordan triple systems play a vital role in
describing not just the structure of the boundary of a bounded symmetric domain, but also
some of its key automorphisms, we begin with a primer on Jordan triple systems. Readers
who are familiar with Jordan triple systems can skip to Section 5.3, where we discuss the
boundary geometry of bounded symmetric domains. Section 5.4 is devoted to stating and
proving certain propositions that are essential to our proofs. Finally, in Sections 5.5 and 5.6,
we present the proofs of the results stated above

5.2 A primer on Jordan triple systems

There is a natural connection between bounded symmetric domains and certain Hermitian
Jordan triple systems. This section collects several definitions and results that are required to
give a coherent description of the boundary of a bounded symmetric domain (which we shall
discuss in the next section).

Unless otherwise stated, the results in this section can be found in the UC-Irvine lectures
by Loos [Loo77] describing how Jordan triple systems can be used to study the geometry of
bounded symmetric domains.
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5 Proper holomorphic maps between bounded symmetric domains

Definition 5.2.1. A Hermitian Jordan triple system is a complex vector space V endowed
with a triple product (x, y, z) 7−→ {x, y, z} that is symmetric and bilinear in x and z and
conjugate-linear in y , and satisfies the Jordan identity

{x, y,{u, v,w}} − {u, v,{x, y,w}}
= {{x, y,u}, v,w} − {u,{y, x, v}, w} ∀x, y,u, v,w ∈ V.

Such a system is said to be positive if for each x ∈ V \ {0} for which {x, x, x} = λx (where
λ is a scalar), we have λ > 0.

As mentioned in Section 1.4, a bounded symmetric domain of complex dimension n has
a realization D as a bounded convex balanced domain in �n. Let (z, . . . , zn) be the global
holomorphic coordinates coming from the product structure on �n and let (ε1, . . . ,εn) denote
the standard ordered basis of �n. Let KD denote the Bergman kernel of (the above realization
of) D and hD the Bergman metric at 0. The function {·, ·, ·} : �n × �n × �n → �n obtained
by the requirement

hD ({εi,ε j ,εk},εl ) =
∂4 log KD (z, z)
∂zi∂z j∂zk∂zl

�����z=0
, (5.1)

and by extending �-linearly in the first and third variables and �-antilinearly in the sec-
ond, has the property that (�n,{·, ·, ·}) is a positive Hermitian Jordan triple system (abbrevi-
ated hereafter as PHJTS). This relationship is a one-to-one correspondence between finite-
dimensional PHJTSs and bounded symmetric domains — which we shall make more precise
in Section 5.3.

Let (V,{·, ·, ·}) be a HJTS. It will be convenient to work with the operators

D(x, y)z = Q(x, z) y := {x, y, z}. (5.2)

We define the operator Q : V → End(V ) by Q(x) y := Q(x, x) y/2. For any x ∈ V , we can
define the so-called odd powers of x recursively by:

x (1) := x and x (2p+1) := Q(x)x (2p−1) if p ≥ 1.

A vector e ∈ V is called a tripotent if e(3) = e.

Tripotents are important to this discussion because:

1. A finite-dimensional PHJTS has plenty of non-zero tripotents.

2. Given a finite-dimensional PHJTS (V,{·, ·, ·}), any vector V has a certain canonical
decomposition as a linear combination of tripotents.

3. In a finite-dimensional PHJTS, the set of tripotents forms a real-analytic submanifold.
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5.2 A primer on Jordan triple systems

We refer the interested reader to [Loo77, Chapter 3] for details of the first fact. As for the
second fact, we need a couple of new notions. First: given a HJTS (V,{·, ·, ·}), we say that
two tripotents e1,e2 ∈ V are orthogonal if D(e1,e2) = 0. Second: given x ∈ V , we define the
real vector space� x� by

� x� := span�{x (2p+1) : p = 0,1,2, . . . }.
These two notions allows us to state the following:

Result 5.2.2 (Spectral decomposition theorem). Let (V,{·, ·, ·}) be a finite-dimensional PHJTS.
Then, each x ∈ V \ {0} can be written uniquely as

x = λ1e1 + · · · + λses (5.3)

where λ1 > λ2 > · · · > λs > 0 and {e1, . . . ,es} is a �-basis of � x� comprising pairwise
orthogonal tripotents.

The decomposition of x ∈ V as given by Result 5.2.2 is called the spectral decomposition
of x. The assignment x 7−→ λ1(x), where λ1(x) is as given by (5.3), is a well-defined
function and can be shown to be a norm on V . This norm is called the spectral norm on V .

Next, we present another decomposition, which give us the second ingredient needed to
describe the boundary geometry of a bounded symmetric domain.

Result 5.2.3 (Pierce decomposition). Let (V,{·, ·, ·}) be a HJTS and let e ∈ V be a tripotent.
Then, the spectrum of D(e,e) is a subset of {0,1,2}. Let

Vj = Vj (e) := {x ∈ V : D(e,e)x = j x}, j ∈ �.

Then:

(i) V = V0 ⊕ V1 ⊕ V2.

(ii) If e , 0, then e ∈ V2.

(iii) We have the relation {Vα,Vβ,Vγ} ⊂ Vα−β+γ.

(iv ) V0,V1 and V2 are Hermitian Jordan subsystems of {·, ·, ·}.

The direct-sum decomposition (a) given by the above result is called the Pierce decompo-
sition of V with respect to the tripotent e. The ideas that go into proving the Pierce decom-
position theorem allow us to construct a special partial order on the set of tripotents of V . In
order to avoid statements that are vacuously true, unless stated otherwise, we take (V,{·, ·, ·})
to be a PHJTS. Let e,e′ ∈ V be tripotents. We say that e is dominated by e′ (e � e′) if there
is a tripotent e1 orthogonal to e such that e′ = e + e1. We say that e is strongly dominated by
e′ (e ≺ e′) if e � e′ and e , e′. The result of interest, in this regard, is the following:
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5 Proper holomorphic maps between bounded symmetric domains

Result 5.2.4. Let (V,{·, ·, ·}) be a HJTS. Let e1,e2 ∈ V be orthogonal tripotents and let
e = e1 + e2. If e′ ∈ V is a tripotent orthogonal to e, then e′ is orthogonal to e1 and e2.

Now suppose {·, ·, ·} is positive. Then, the relation � is a partial order on the set of tripo-
tents.

Definition 5.2.5. A tripotent is said to be minimal (or primitive) if it is minimal for � among
non-zero tripotents. It is said to be maximal if it is maximal for �.

Result 5.2.6. Consider the tripotents of V partially ordered by �.

1. A tripotent e is maximal if and only if the Pierce space V0(e) = 0.

2. If, for a tripotent e, the Pierce space V2(e) = �e, then e is primitive.

Let us now also assume that (V,{·, ·, ·}) is finite dimensional. Given any non-zero tripotent
e, it follows from finite-dimensionality and the repeated application of Result 5.2.4 that e
can be written as a sum of mutually orthogonal primitive tripotents. This brings us to the
final concept in this primer: the rank of a tripotent e is the minimum number of primitive
tripotents required for such a decomposition of e while the rank of (V,{·, ·, ·}) is the highest
rank that a tripotent of V can have.

5.3 The boundary geometry of bounded symmetric
domains

In this section we describe the boundary of a bounded symmetric domain in terms of the
positive Hermitian Jordan triple system associated to it. Thus, we shall follow the notation
introduced in Section 5.2. Recall that a bounded symmetric domain D has a realization as a
bounded convex balanced domain. When we say “Hermitian Jordan triple system associated
to D”, it is implicit that D is this realization and the association is the one given by (5.1).
This is a one-to-one correspondence, described as follows:

Result 5.3.1 ([Loo77], Theorem 4.1). Let D be a realization of a bounded symmetric domain
as a bounded convex balanced domain in�n for some n ∈ �+. Then, D is the open unit ball in
�n with respect to the spectral norm determined by the PHJTS associated to D. Conversely,
given a PHJTS (�n,{·, ·, ·}), the open unit ball with respect to the spectral norm determined
by it is a bounded symmetric domain D, and the PHJTS associated to D by the rule (5.1) is
(�n,{·, ·, ·}).

In what follows, whenever we mention a bounded symmetric domain D, it will be understood
that D is a bounded convex balanced realization.

The boundary of a bounded symmetric domain D ⊂ �n has a certain stratification into
real-analytic submanifolds that can be described in terms of the PHJTS associated to D. The
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first part of this section is devoted to describing this stratification. Fix a bounded symmetric
domain D ⊂ �n and let (�n,{·, ·, ·}D) be the PHJTS associated to it. It turns out (see [Loo77,
Theorem 5.6]) that the set MD of tripotents of �n with respect to {·, ·, ·}D is a disjoint union of
real-analytic submanifolds of�n. For each e ∈ MD, let MD,e denote the connected component
of MD containing e. The tangent space Te(MD,e), viewed extrinsically (i.e., so that e +

Te(MD,e) is the affine subspace of all tangents to MD,e at e), is:

Te(MD,e) = iA(e) ⊕ V1(e),

where A(e) is determined by the relation V2(e) = {x + iy ∈ �n : x, y ∈ A(e)}, and Vj (e) is
the eigenspace of j = 0,1,2 in the Pierce decomposition of �n with respect to e.

Let M∗D be the set of all non-zero tripotents and let ‖ · ‖D denote the spectral norm deter-
mined by {·, ·, ·}D. Define

ED := {(e, v) ∈ �n × �n : e ∈ M∗D and v ∈ V0(e)},
BD := {(e, v) ∈ ED : ‖v ‖D < 1}.

We can write BD as a disjoint union of the form

BD :=
⊔
α∈C

BD,α, (5.4)

where C is the set of connected components of M∗D, and each BD,α is a connected, real-
analytic submanifold of �n × �n that is a real-analytic fibre bundle whose fibres are unit
‖ · ‖D-discs. The key theorem about the boundary of D is as follows:

Result 5.3.2 ([Loo77], Chapter 6). Let D be a bounded symmetric domain in �n and let
f : BD → �n be defined by f(e, v) := e + v . Then:

(i) f|BD,α is an imbedding for each α ∈ C;

(ii) ∂D = tα∈CMD,α, whereMD,α := f(BD,α);

(iii) in the above stratification of ∂D, ifMD,α is of dimension dα, then it is a closed, con-
nected, real-analytic imbedded submanifold of the open set

�
n \

⋃
β : dim�(MD, β )<dα

MD,β .

Furthermore, when D is an irreducible bounded symmetric domain in �n, then we can
provide further information. Here, the rank of a bounded symmetric domain is the rank of
the Jordan triple system (�n,{·, ·, ·}D).

Result 5.3.3 ([Loo77], Chapter 6; [Vig91], Théorème 7.3). Let D be an irreducible bounded
symmetric domain in �n of rank r, and let C denote the set of connected components of BD.
Then, we have the following:
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(i) C has cardinality r.

(ii) Each connected component of the decomposition (5.4) is a bundle over a submanifold
of non-zero tripotents of rank j, j ∈ {1, . . . ,r}. Denoting this bundle as BD, j , j ∈
{1,2, . . . ,r}, we can express the stratification of ∂D given by Result 5.3.2-(ii) as

∂D =

r⊔
j=1

MD, j ,

whereMD, j := f(BD, j ), and eachMD, j is connected.

(iii) The stratumMD,1 is dense in ∂D.

The other goal of this section is to describe the structure of the germs of complex-analytic
varieties contained in the boundary of a bounded symmetric domain D. This structure can be
described in extremely minute detail; see, for instance, [Wol72] by Wolf. In fact, the papers
about higher-rank bounded symmetric domains mentioned in Section 1.4 make extensive use
of this fine structure. However, in this work, we only need very coarse information about the
complex analytic structure of ∂D; specifically: the distinction between the Shilov boundary
of D and its complement in ∂D.

We denote the Shilov boundary of D by ∂S D. Recall that, given a uniform algebra A on a
compact Hausdorff space X , a boundary for A is a closed set S ⊂ X such that

sup
S
| f | = sup

X
| f | ∀ f ∈ A.

It can be proved that the intersection of all the boundaries for A is itself a boundary for A,
known as the Shilov boundary for A. In this chapter, whenever we use the term “Shilov
boundary”, we shall mean the Shilov boundary for the uniform algebra A(D) := O(D) ∩
C(D). We will need the following definition which is related to the present discussion:

Definition 5.3.4. Let D be a bounded domain in �n. An affine ∂D-component is an equiva-
lence class under the equivalence relation ∼A on ∂D given by

x ∼A y ⇐⇒ x and y can be joined by a chain of segments lying in ∂D,

where a segment is a subset of �n of the form {u + tv : t ∈ (0,1)}, u, v ∈ �n. A holomorphic
arc component of ∂D is an equivalence class under the equivalence relation ∼H on ∂D given
by

x ∼H y ⇐⇒ x and y can be joined by a chain of analytic discs lying in ∂D.

Roughly speaking, given a bounded domain D b �n and a point x ∈ ∂D, the holomor-
phic arc component of ∂D containing x is the largest (germ of a) complex-analytic variety
lying in ∂D that contains x. The information that we require about holomorphic boundary
components is:
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Result 5.3.5 ([Loo77], Theorem 6.3). Let D be the realization of a bounded symmetric do-
main as a bounded convex balanced domain in �n.

(i) The affine ∂D-components and the holomorphic arc components of ∂D coincide.

(ii) A boundary component containing a point x ∈ ∂D is a non-empty open region in
some �-affine subspace of positive dimension passing through x unless x is a maximal
tripotent.

Finally, we mention the following description of the Shilov boundary of a bounded sym-
metric domain:

Result 5.3.6 ([Loo77], Theorem 6.5). Let D b �n be as in Result 5.3.5. The Shilov boundary
of D coincides with each of the following sets:

(i) the set of maximal tripotents of �n with respect to {·, ·, ·}D;

(ii) the set of extreme points of D;

(iii) the set of points of D having the maximum Euclidean distance from 0 ∈ �n.

5.4 Some essential propositions

This section contains several lemmas and propositions — some being simple consequences
of known results, and some requiring substantial work — that will be needed to prove our
theorems. We begin by giving formulas for certain special automorphisms of a bounded
symmetric domain.

Let D be a bounded symmetric domain in �n. Let (�n,{·, ·, ·}D) be the Jordan triple system
associated to D (as in other places in this paper, we assume that D is a Harish-Chandra
realization). Let DD and QD be the maps (5.2) for the triple product {·, ·, ·}D. We define the
linear operators BD (x, y) : �n → �n:

BD (x, y) := idD − DD (x, y) + Q(x)Q(y), x, y ∈ �n.

Consider the sesquilinear form (x, y) 7−→ Tr[DD (x, y)] on �n. It turns out that the positivity
of {·, ·, ·}D is equivalent to the above sesquilinear form being an inner product on �n; see
[Loo77, Chapter 3]. Furthermore with respect to this inner product, we have:

BD (x, y)∗ = BD (y, x) ∀x, y ∈ �n.

It is now easy to deduce that BD (a,a) is a self-adjoint, positive semi-definite linear operator.
Consequently, BD (a,a) admits a unique positive semi-definite square root, which we denote
by BD (a,a)1/2. Having made these two definitions, we can now give an explicit formula for
some special automorphisms of D.
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5 Proper holomorphic maps between bounded symmetric domains

Result 5.4.1 ([Loo77], Proposition 9.8; [Roo00], Proposition III.4.1). Let D be the realiza-
tion of a bounded symmetric domain as a convex balanced domain in �n. Fix a point a ∈ D
and let

ga (z) := a + BD (a,a)1/2(idD + DD (z,a))−1(z) ∀z ∈ D.

Then, ga ∈ Aut(D), ga (0) = a, and g′a (z) = BD (a,a)1/2 ◦ BD (z,−a)−1. Furthermore,
g−1

a = g−a.

Various versions of the following lemma have been known for a long time. We refer the
reader to [Rud08, Lemma 15.2.2] for a proof.

Lemma 5.4.2. Let D be a bounded domain in �n and let p ∈ ∂D. Assume that there exists
a ball B centered at p and a function h ∈ O(B ∩ D) ∩ C(B ∩ D;�) such that h(p) = 1 and
|h(z) | < 1 ∀z ∈ B ∩ D \ {p}. Let a0 ∈ D and {φk} be a sequence of automorphisms of D
such that φk (a0) −→ p as k → ∞. Then, {φk} converges uniformly on compact subsets of D
to constp — the map that takes the constant value p.

We now state a version of Schwarz’s lemma for convex balanced domains and then a
version of Schwarz’s lemma for irreducible bounded symmetric domains, both of which are
needed in the proof of our Key Lemma (see Section 5.1).

Result 5.4.3 ([Rud08], Theorem 8.1.2). Let Ω1 and Ω2 be balanced regions in �n and �m

respectively, and let F : Ω1 → Ω2 be a holomorphic map. Suppose Ω2 is convex and
bounded. Then:

i) F′(0) maps Ω1 into Ω2; and

ii) F (rΩ1) ⊆ rΩ2 (0 < r ≤ 1) if F (0) = 0.

Result 5.4.4 ([Vig91], Théorème 7.4). Let D be an irreducible bounded symmetric domain
in �n in its Harish-Chandra realization (whence it is the unit ball in �n for the associated
spectral norm ‖ · ‖). Let F : D → D be a holomorphic map such that F (0) = 0. Assume
that for some non-empty open set U ⊂ D, we have ‖F (z)‖ = ‖z‖ ∀z ∈ U. Then F is an
automorphism of D.

With these two results, we can now give a proof of our Key Lemma:

The proof of the Key Lemma. Let z ∈ U, and set w := F (z). By hypothesis, F maps ∆z

into D and
(
F |W1

)−1 maps ∆w into D. Applying Result 5.4.3 to F |∆z and to
(
F |W1

)−1 ��∆w , we
have ‖F (z)‖ = ‖z‖ for every z ∈ U . Thus by the Schwarz lemma for irreducible bounded
symmetric domains, F is an automorphism of D. �

We now state and prove a technical proposition regarding the invertibility of the operator
BD at certain off-diagonal points in ∂D × ∂D, where D is an irreducible bounded symmetric
domain of dimension ≥ 2. HereMD,1 denotes the stratum of ∂D described by Result 5.3.3.
This result and our Key Lemma are the central ingredients in the proof of our Main Theorem.
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Proposition 5.4.5. Let D be the realization of an irreducible bounded symmetric domain of
dimension n as a bounded convex balanced domain in �n, n ≥ 2. Let p ∈ ∂D. For each
z0 ∈ MD,1 and eachMD,1-open neighbourhood U 3 z0, there exists a point w ∈ U such that
det BD (·,p) is non-zero on the set {ζw : ζ ∈ �, |ζ | = 1}.

Remark 5.4.6. In the following proof, we argue by assuming that the conclusion above is
false. We can instantly arrive at a contradiction at the point (•) in the proof below if we
invoke results on the fine structure of ∂D; see [Wol72], for instance. However, we provide an
elementary argument beyond (•) to complete the proof in the hope that appropriate analogues
of the above may be formulated in other contexts.

Proof. Let us denote det BD (z,p) as h(z), where z ∈ �n. Let us assume that the result is
false. Then, there exists a point z0 ∈ MD,1 and anMD,1-open neighbourhood U 3 z0 such
that for each w ∈ U , there exists a ζw ∈ {ζ ∈ � : |ζ | = 1} with h(ζww) = 0. Let q denote
the quotient map q : �n \ {0}→ ��n−1. Also write

Zh := h−1{0}, Z := Zh ∩MD,1.

Our assumption implies that q(Z ) contains a non-empty open set V ⊂ ��n−1. Let A :=
{z ∈ �n : 1 − ε < ‖z‖ < 1 + ε}, where ‖ · ‖ denotes the spectral norm relative to which D is
the unit ball, and ε is a fixed number in (0,1). AsV ⊂ q(A), it is easy to see thatV can be
covered by finitely many holomorphic coordinate patches (U1,ψ1), . . . , (UM ,ψM ) such that
the maps

qj := ψ j ◦ q |q−1(Uj )∩A : q−1(Uj ) ∩ A → �
n−1

are Lipschitz maps. Since Lipschitz maps cannot increase Hausdorff dimension (see [Rud08,
Proposition 14.4.4], for instance) and dim�(V ) = 2n − 2, the preceding discussion shows
that the Hausdorff dimension of Z (and hence the dimension of Z as a real-analytic set) is
2n − 2. As Zh is a complex analytic subvariety, its singular locus is of complex dimension
≤ n − 2. Thus, we can find a point x0 ∈ Z that is a regular point of Zh, and an open ball B
around x0 that is so small that

• MD,1 ∩ B is a submanifold of B;

• B ∩ Zh is an (n − 1)-dimensional complex submanifold of B;

• the dimension of B ∩ Z is 2n − 2.

These three facts imply that M := B ∩ Zh ⊂ MD,1. We can deduce this by considering a
local defining function ρB : B → � forMD,1 and observing that, by Łojasiewicz’s theorem
[Łoj59], ρB |M ≡ 0. If D = �n, we already have a contradiction and, hence, the proof.

SinceMD,1 is a real-analytic submanifold of �n\
⊔

j≥2MD, j , whereMD, j are the strata of
∂D discussed in Section 5.3, we can define the Levi-form ofMD,1 — denoted byL(z,V ), z ∈
MD,1, V ∈ Hz (MD,1). A few words about notation: in this proof, we shall work with the
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5 Proper holomorphic maps between bounded symmetric domains

tangent bundle ofMD,1 defined extrinsically. So, when referring to vectors in Tz (MD,1), we
shall view them either as real or as complex vectors, as convenient, such that z + Tz (MD,1)
is the hyperplane tangent toMD,1 at z ∈ MD,1. In this scheme:

Hz (MD,1) := Tz (MD,1) ∩ iTz (MD,1).

As dim�(M) = n − 1, L(z, ·) ≡ 0 ∀z ∈ M . The curve γ : (−ε,ε) → MD,1 (for ε > 0
suitably small) γ(t) := exp(it)z is transverse to M at z. This is because if γ′(0) = iz were in
Hz (MD,1), then

iγ′(0) = −z ∈ Hz (MD,1) ⊂ Tz (MD,1),

which contradicts the convexity of D. Consequently, for ε0 > 0 sufficiently small, the set
{exp(it)z : t ∈ (−ε0, ε0), z ∈ M} contains anMD,1-open neighbourhood of x0. Thus,MD,1

is Levi-flat at x0. AsMD,1 is real-analytic, it is a Levi-flat hypersurface.

We shall now show that Levi-flatness of MD,1 leads to a contradiction. Let us pick an
x ∈ MD,1. Owing to Levi-flatness, we can find a ball Bx , centered at x, such that

D−x := D ∩ Bx , D+
x := Bx \ D

are both pseudoconvex. Let nx denote the unit outward normal vector to ∂D at x (x ∈ MD,1).
Owing to convexity of D, we can find an ε0 > 0 and a δ0 > 0 such that

Hx (ε0; δ) := x + δnx + {V ∈ Hx (MD,1) : |V | < ε0} ⊂ D+
x

for each δ ∈ (0, δ0). Here, | · | denotes the Euclidean norm. As Hx (ε0; δ) is a copy of a
complex (n − 1)-dimensional ball and as D+

x is taut — see [KR81, Proposition 2.1] — it
follows that Hx (ε0; 0) ⊂ MD,1. To summarize,MD,1 has the following property:

(•) At each x ∈ MD,1, a germ of the set (x + Hx (MD,1)) lies inMD,1.

Let us now pick and fix a point y0 ∈ MD,1. Let (z1, . . . , zn) be global holomorphic coor-
dinates in �n, associated to an appropriate rigid motion of D, such that y0 = (0, . . . ,0),D ⊂
{Rez1 > 0} and Hy0 (MD,1) = {z1 = 0} relative to these coordinates. Let W be a non-zero
vector in Hy0 (MD,1) and let DW := D ∩ span�{W,n y0}. Clearly, DW is convex and by (•)
MD,1 ∩ span�{W,n y0} =: MW has the property that for each point y ∈ MW , the germ of a
complex line through y , call it Λy,W , lies inMW . Let us view DW as lying in �2, whence a
portion ofMW near (0,0) can be parametrized by three real variables as follows:

r (t,u, v) = ρ(t) + a(t)(u + iv ), |t | < ε1, |u|, |v | < ε2,

where ρ : (−ε1, ε1) → MW is a smooth curve through (0,0) such that ρ′(t) is orthogonal
to Λρ(t),W for each t, and a : (−ε1, ε1) → �2 is such that a(t) is parallel to Λρ(t),W for each
t. For the remainder of this paragraph, n(t,u, v) will denote the inward unit normal to ∂DW
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at r (t,u, v), and · will denote the standard inner product on �4. Define the matrix-valued
function Γ : (−ε1, ε1) × (−ε2, ε2)2 → �3×3 by

Γ(τ,U,V ) := Hesst,u,v (r (t,u, v) · n(τ,U,V ))��(t,u,v )=(τ,U,V ) .

The convexity of DW implies that Γ(τ,U,V ) is positive semidefinite at each (τ,U,V ) (recall
that n(τ,U,V ) is the inward normal at r (τ,U,V )). By choosing ε1, ε2 > 0 small enough, we
can ensure that (n2

1 + n2
2)(t,u, v) , 0 for every (t,u, v), where we write n = (n1,n2,n3,n4),

and that a is of the form a(t) = (α(t) + i β(t),1). We compute to observe that two of the
principal minors of Γ turn out to be −(n1α

′ + n2 β
′)2 and −(n2α

′ − n1 β
′)2, which must be

non-negative. This gives us the system of equations

n1α
′ + n2 β

′��(τ,U,V ) = 0

−n1 β
′ + n2α

′��(τ,U,V ) = 0 ∀(τ,U,V ).

By our assumption on n, this implies that α′ = β′ ≡ 0. Restating this geometrically, there is
a smallMW -open neighbourhood of 0 ∈ ∂DW such that, for every y in this neighbourhood,
Λy,W is parallel to the vector W . This holds true for each non-zero W ∈ Hy0 (MD,1). Thus,
there is anMD,1-open patch ω 3 y0 such that

x + Hx (MD,1) is parallel to {z1 = 0} for every x ∈ ω. (5.5)

By Result 5.3.3,MD,1 is connected. Thus, if y0 , y ∈ MD,1, then y can be joined to y0 by
a chain ofMD,1-open patchesΩ0, . . . ,ΩN , whereΩ0 equals the patchΩ in (5.5),Ω j−1 j∩Ω j ,

∅, j = 1, . . . ,N , and ΩN 3 y . By a standard argument of real-analytic continuation, we
deduce that (5.5) holds with ΩN replacing Ω (where z1 comes from the global system of
coordinates fixed at the beginning of the previous paragraph). Hence, x + Hx (MD,1) is
parallel to {z1 = 0} for each x ∈ MD,1. AsMD,1 is dense in ∂D, and D is bounded, we can
find a ξ ∈ D and a vector W = (W1, . . . ,Wn) with W1 = 0 such that the ray {ξ + tW ; t ≥ 0}
intersects ∂D at a point inMD,1. Then, this ray must be tangential toMD,1 at the point of
intersection, which is absurd as D is convex. Hence, our initial assumption must be false. �

5.5 The proof of Theorem 5.1.1

Before we proceed further, we clarify our notation for the different norms that will be used
in the proof of Theorem 5.1.1. With D1 and D2 as in Theorem 5.1.1, ‖ · ‖ j will denote the
spectral norms such that D j is the unit ‖ · ‖ j-ball in �n, j = 1,2. The Euclidean norm on �n

will be denoted by | · |. We will also need to impose norms on certain linear operators on �n.
We shall use the operator norm induced by the Euclidean norm: for a �-linear operator A on
�n, we set

‖A‖op := sup
|x |=1
|Ax |.
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5 Proper holomorphic maps between bounded symmetric domains

The proof of Theorem 5.1.1. We shall take D1 and D2 to be Harish-Chandra realizations
of the given bounded symmetric domains. We may assume, composing F with suitable
automorphisms if necessary, that F (0) = 0.

By Lemma 2.2.5, F extends to a holomorphic map defined on a neighbourhood N of D1.
For simplicity of notation, we shall denote this extension also as F. The complex Jacobian
Jac�F is holomorphic on N and Jac�F . 0 on D1. Hence, by the maximum principle,
Jac�F . 0 on ∂D1. By definition, we can find a point p ∈ ∂S D1 such that

sup
D1

|Jac�F | = |Jac�F (p) | , 0.

By the inverse function theorem, we can find a ball B(p,r) ⊂ N such that F |B(p,r) is injective.
Let us write

Ω1 := B(p,r) ∩ D1, Ω2 := F (B(p,r)) ∩ D2.

We shall use our Key Lemma (see Section 5.1, and Section 5.4 for its proof) to deduce
the result. The regions W1 and W2 of that Lemma will be constructed by applying suitable
automorphisms to Ω1 and Ω2.

Claim. F (p) ∈ ∂S D2.
Suppose F (p) < ∂S D2. It follows from Result 5.3.5 and Result 5.3.6 that there is a vector
V ∈ �n \ {0} and neighbourhood Ω of 0 ∈ � such that ψ(Ω) ⊂ F (B(p,r)) ∩ ∂D2, where
ψ : Ω 3 ζ 7−→ F (p) + ζV . Next, define

ψ̃ := (F |B(p,r))−1 ◦ ψ.

Since F |D1 is proper and F |B(p,r) is injective,

F (z) ∈ F (B(p,r)) ∩ ∂D2 ⇐⇒ z ∈ B(p,r) ∩ ∂D1.

Thus ψ̃(Ω) ⊂ ∂D1. Furthermore, ψ̃ is non-constant and ψ̃(0) = p. By definition, each
point of ψ̃(Ω) \ {p} lies in the holomorphic arc component of ∂D1 containing p. This is a
contradiction since p, being an extreme point, is a one-point affine ∂D1-component and thus,
by Result 5.3.5, a one-point holomorphic arc component of ∂D1. Hence the claim.

Let us now take a sequence {ak} ⊂ Ω1 such that ak → p, and let bk := F (ak ). Let φ1
k ∈

Aut(D1) denote an automorphism that maps 0 to ak . Let φ2
k ∈ Aut(D2) be an automorphism

that maps 0 to bk . Owing to Result 5.3.6 and to convexity, we can construct a peak function
for p on D1. Likewise (in view of the last claim) F (p) is a peak point of D2. By Lemma 5.4.2,
we get:

φ
j
k −→ constp j uniformly on compacts, j = 1,2, (5.6)

where p j ,p1 := p,p2 := F (p).

We now define
Ω

k
j := (φ j

k )−1(Ω j ), j = 1,2, k ∈ �+.
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Given any r > 0, write rD j := {z ∈ �n : ‖z‖ j < r}, j = 1,2. By (5.6), there exists a
sequence k1 < k2 < k3 < . . . in �+ such that

φ1
kν

(
(1 − 1/s)D1

)
⊂ Ω1 ∀ν ≥ s, s ∈ �+.

By (5.6) again, we can extract a sequence of indices ν(1) < ν(2) < ν(3) < . . . such that

φ2
kν (t )

(
(1 − 1/s)D2

)
⊂ Ω2 ∀t ≥ s, s ∈ �+.

In the interests of readability of notation, let us re-index {kν(s)}s∈�+
as {km}m∈�+

. Then, the
above can be summarized as:

(∗) With the sequences of maps {φ1
k} ⊂ Aut(D1) and {φ2

k} ⊂ Aut(D2) as described above,
there is a sequence {km}m∈�+

⊂ �+ and a strictly increasing �+-valued function ν∗

such that

(1 − 1/s)D1 ⊂ Ω
km
1 ∀m ≥ s, s ∈ �+, (5.7)

(1 − 1/ν∗(s))D2 ⊂ Ω
km
2 ∀m ≥ s, s ∈ �+. (5.8)

Step 1. Analyzing the family {(φ2
km

)−1 ◦ F ◦ φ1
km

}m∈�+

Consider the maps Gm : D1 → D2 defined by

Gm := (φ2
km )−1 ◦ F ◦ φ1

km .

By Montel’s theorem, and passing to a subsequence and relabelling if necessary, we get a
map G ∈ O(D1;�n) such that Gm → G uniformly on compact subsets. Let us fix an s ∈ �+.
By (∗), we infer that ∃Ms ∈ �+ such that (1 − 1/s)D j ⊂ Ω

km
j ∀m ≥ Ms, j = 1,2. Note that

Gm |Ωkm
1

is a biholomorphism, whence G′m(0) is invertible for each m. Hence, by the Schwarz
lemma for convex balanced domains (i.e. Result 5.4.3 above) G′m(0) maps (1 − 1/s)D1 into
D2 and G′m(0)−1 maps (1 − 1/s)D2 into D1 ∀m ≥ Ms. We claim that this implies that
G′(0) is invertible. Suppose not. Then we would find a z0 with ‖z0‖1 = (1 − 2/s) such that
G′(0)z0 = 0. Note that G′m(0) → G′(0) in norm, whence, given any ε > 0, ‖G′m(0)z0‖2 < ε

for every sufficiently large m. If we now choose ε ≤ (1 − 2/s)2, we see that

G′m(0)−1 ({‖w‖2 = (1 − 2/s)}) 1 D1

for all sufficiently large m. This is a contradiction. Hence the claim.

Now that it is established that G′(0) is invertible, it follows that G′m(0)−1 → G′(0)−1

in norm. Hence, G′(0)−1 maps (1 − 1/s)D2 into D1. Recall that s ∈ �+ was arbitrarily
chosen and that the function ν∗ in (∗) is strictly increasing. Thus, G′(0)−1 maps D2 into
D1. By construction, G(D1) ⊂ D2. Now, D2 is complete (Kobayashi) hyperbolic. Hence
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D2 is taut; see [Kie70]. As G(0) = 0 ∈ D2,G maps D1 to D2. So, the holomorphic map
G′(0)−1 ◦ G : D1 → D1 satisfies all the conditions of Cartan’s uniqueness theorem. Thus,

G′(0)−1 ◦ G = idD1 ,

which means that G = G′(0) |D1 .

Step 2. Showing that D1 and D2 are biholomorphically equivalent
We have shown in Step 1 that G′(0)−1 maps (1 − 1/s)D2 into D1. As G′(0) is injective, this
means that G′(0)(D1) contains (1 − 1/s)D2 for arbitrarily large s ∈ �+. Thus G maps D1

onto D2. It follows that D1 is biholomorphic to D2.

It would help to simplify our notation somewhat. By the nature of the argument in Step
1, it is clear that we can assume that the sequences {ak} ⊂ Ω1 and {bk} ⊂ Ω2 are so
selected that (∗) is true with {km}m∈�+

= {1,2,3, . . . }. Owing to Step 2, we may now
assume D1 = D2 := D. The argument we will make in Step 3 below is valid regardless of
the specific sequence {ak} or {bk}. Hence, in the next three paragraphs following this, the
sequence {Ak} will stand for either {ak} or {bk}, and the point q will stand for either p or
F (p). Also, we will abbreviate φ j

Ak
to φk .

Step 3. Producing subsequences of {φk} that converge on “large” subsets of ∂D.
By Result 5.4.1 we may take φk = gAk

, whence

φ′k (z) = BD (Ak , Ak )1/2 ◦ BD (−z, Ak )−1. (5.9)

In the argument that follows, it is implicit that each φk is defined as a holomorphic map on
some neighbourhood (which depends on φk) of D; see Lemma 2.2.5. By Proposition 5.4.5
we can find a point ξ0 ∈ MD,1 such that

det BD (eiθξ0,q) , 0 ∀θ ∈ �.

By continuity, there exists a D-open neighbourhood Γ of q, anMD,1-open neighbourhood W
of ξ0, and a D-open set V with the following properties:

(a) z ∈ V =⇒ eiθ z ∈ V ∀θ ∈ �;

(b) V ∩ ∂D = S1 ·W ;

(c) z ∈ V =⇒ t z ∈ V ∀t ∈ [1,1/‖z‖]

(now ‖ · ‖ is the spectral norm associated to D); such that

det BD (z, w) , 0 ∀(z, w) ∈ V × Γ. (5.10)

Here, given a set X ⊂ �n,S1 · X stands for the set {eiθ x : x ∈ X, θ ∈ �}. Let us call any
pair (V,W ), where V is a D-open set and W is anMD,1-open set, a truncated prism with base
S1 ·W if (V,W ) satisfies properties (a)-(c) above.

We can find V ′ and W ′, with W ′ ⊂ W , such that (V ′,W ′) is a truncated prism with base
S1 ·W ′ with the properties:
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• V ′ ⊂ V ;

• There exists a δ0 � 1 such that for z1, z2 ∈ V ′, the segment [z1, z2] ⊂ V whenever
|z1 − z2 | < δ0.

Owing to holomorphicity and convexity,

φk (z1) − φk (z2) =

∫ 1

0
φ′k (z1 + t(z2 − z1)) (z2 − z1)dt, z1, z2 ∈ D. (5.11)

We can find a K ≡ K (W ) such that, in view of (5.10), {BD (z, Ak ) : k ≥ K (W ), z ∈ V} is a
compact family in GL(n,�). Hence, in view of (5.9) (and since {BD (Ak , Ak ) : k ∈ �+} is a
relatively compact family in �n×n), there exists a constant C > 0 such that

‖φ′k (z)‖op ≤ C ∀z ∈ V , ∀k ≥ K.

By our construction of V ′, and from (5.11), we conclude:

|φk (z1) − φk (z2) | ≤ C |z1 − z2 | ∀z1, z2 ∈ V ′, |z1 − z2 | < δ0, and ∀k ≥ K.

In short, {φk |V ′} ⊂ C(V ′;�n) is an equicontinuous family.

By the Arzela-Ascoli theorem, we can find a subsequence of {φk} that converges uni-
formly to q on V ′. For simplicity of notation, let us continue to denote this subsequence as
{φk}. Then there exists a K1 ∈ �+ such that φk (V ′) ⊂ Ω (which denotes either Ω1 or Ω2)
∀k ≥ K1. Furthermore, we may assume that K1 is so large that, thanks to (∗),

(1 − 1/s)D ⊂ φ−1
k (Ω) ∀k ≥ K1,

where s is so large that (1 − 1/s)D ∩ V ′ is a non-empty open set. By construction:

z ∈ V ′ ∩ D =⇒ ∆z ⊂ (1 − 1/s)D ∪ V ′.

Hence ∆z ⊂ φ
−1
k (Ω) ∀k ≥ K1. We summarize the content of this paragraph as follows:

(∗∗) Given any truncated prism (V,W ) with base S1 ·W such that BD (z, Ak ) , 0 on V for all
k sufficiently large, we can find a K1 ∈ �+ and a truncated prism (V ′,W ′) with V ′ ⊂ V
such that ∆z ⊂ φ

−1
k (Ω) for each z ∈ V ′ ∩ D and each k ≥ K1.

Step 4. Completing the proof.
By Proposition 5.4.5 and (∗∗), we can find a truncated prism (V ′,W ′) with base S1 ·W ′ which
has all the properties stated in (∗∗). Let s ∈ �+ be so large that (1−1/s)D∩V ′ := U′ is a non-
empty open set. As Gk → G uniformly on U′ (by Step 1), there exists a point w0 ∈ G(U′),
K2 ∈ �+ and a c > 0 such that the ball

B(w0,c) ⊂ G(U′) ∩ Gk (U′) and B(w0,c) ⊂ Ωk
2 ∀k ≥ K2.
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5 Proper holomorphic maps between bounded symmetric domains

Write ‖ · ‖ for the spectral norm associated to D. Let R : �n \ 0 → ∂D be given by
R(w) := w/‖w‖. By Proposition 5.4.5 and (∗∗), we can find a MD,1-open subset Ω2 such
that

Ω2 ⊂ R(B(w0,c)),

a truncated prism (V2,Ω2) with base S1 · Ω2, and a K3 ∈ �+ such that ∆w ⊂ Ωk
2 for each

w ∈ V2 ∩ D and each k ≥ K3. Let us now set U := G−1
(
R−1(Ω2) ∩ B(w0,c)

)
, and K∗ :=

max(K1,K2,K3). Finally, we set

W j :=
(
φ

j
K∗

)−1
(Ω j ), j = 1,2,

with the understanding that φ1
k = gak and φ2

k = gbk .

As U ⊂ V ′,∆z ⊂ W1 for each z ∈ U. By construction

GK∗ (z) ∈ B(w0,c) ⊂ W2 ∀z ∈ U.

Finally, by construction, for each z ∈ U , there exists a point wz ∈ ∆GK∗ (z) that belongs to
V2 ∩ D. Thus, ∆GK∗ (z) ⊂ W2. Recall that GK∗ |W1 : W1 → W2 is a biholomorphism and
GK∗ (0) = 0. By our Key Lemma, GK∗ , and consequently F, must be a biholomorphism. �

5.6 The proof of Theorem 5.1.3

As p is an orbit accumulation point, there is a point a0 ∈ D1 and a sequence {φk} ⊂ Aut(D1)
such that φk (a0) → p. Regardless of whether p is a peak point or F (p) is a peak point, let us
denote the relevant peak function as H . Let B denote a small ball centered at p, with B b U,
if p is a peak point, and centered at F (p), with B b F (U), if F (p) is a peak point. Depending
on whether p or F (p) is a peak point, set G := F−1 or G := F, respectively. Finally, set

h :=

 H ◦ G |B∩D2
, if p is a peak point,

H ◦ G |B∩D1
, if F (p) is a peak point.

By our hypothesis on F, it follows that h satisfies all the conditions required of the function
h in Lemma 5.4.2 for the appropriate choice of (D,p) depending on whether p or F (p) is a
peak point.

Let us now denote the automorphisms discussed above as φ1
k , k = 1,2,3, . . . Then, using

H or the function h constructed above, depending on whether p or F (p) is a peak point, we
deduce by Lemma 5.4.2 that φ1

k −→ constp uniformly on compact subsets of D1. Set ak :=
φ1

k (0). As ak → p, we may assume without loss of generality that ak ∈ U. Let bk := F (ak ),
and let φ2

k ∈ Aut(D2) be an automorphism that maps 0 to bk (which is possible as Aut(D2)
acts transitively on D2). Repeating the above argument, φ2

k −→ constF (p) uniformly on
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5.6 The proof of Theorem 5.1.3

compact subsets of D2. We have arrived at the same result as in (5.6). Thereafter, if we
define

Ω
k
j := (φ j

k )−1(Ω j ), j = 1,2, k ∈ �+,

where Ω1 := U and Ω2 := F (U), then, reasoning exactly as in the passage following (5.6),
we deduce that (∗) from Section 5.5 holds true for our present set-up.

With {km}m∈�+
as given by (∗), let us define the maps Gm : Ωkm

1 → Ω
km
2 by

Gm := (φ2
km )−1 ◦ F ◦ φ1

km .

By construction, each Gm is a biholomorphic map. In particular,

Gm(0) = 0, and G′m(0) ∈ GL(n,�). (5.12)

We may assume, owing to (5.6), that the sequences {Ωkm
j }m∈�+

are increasing sequences. By
Montel’s theorem, and arguing by induction, we can find sequences {Gl,m} and holomorphic
maps Γl : Ωkl

1 → D2 such that:

• {G1,m}m∈�+
is a subsequence of {Gν}ν∈�+

and {Gl+1,m}m∈�+
is a subsequence of

{Gl,ν}ν∈�+
;

• Gl,m��Ωkl
1
−→ Γl , as m → ∞, uniformly on compact subsets of Ωkl

1 ;

for l = 1,2,3, . . . Owing to this construction, the rule

Γ(z) := Γl (z) if z ∈ Ωkl
1 ,

gives a well-defined holomorphic map Γ : D1 → D2.

Let us define Hl := Gl,l . Now suppose Γ(D1) ∩ ∂D2 , ∅. Then, ∃ξ ∈ D1 such that
Γ(ξ) ∈ ∂D2. Let M ∈ �+ be so large that ΩkM

1 3 ξ. As D2 is a bounded symmetric domain,
it is taut. Thus, by focusing attention on the sequence

{Hl |ΩkM
1

: l = M,M + 1,M + 2, . . . } ⊂ O(ΩkM
1 ; D2),

we must conclude, by assumption, that Γ(ΩkM
1 ) ⊂ ∂D2. But, by (5.12), Γ(0) = 0 < ∂D2. This

is a contradiction, from which we infer:

(a) The range of Γ is a subset of D2.

Now observe that, by (∗), we have:

(b) The sequence {Hl : l = s, s + 1, s + 2, . . . } converges uniformly to Γ on (1 − 1/s)D1,
s ∈ �+.

(c) H−1
l maps 0 to 0 and (1 − 1/ν∗(l))D2 into D1 (since dom(H−1

l ) = range(Hl ) ⊇ Ω
kl
2 ).
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5 Proper holomorphic maps between bounded symmetric domains

In view of (5.12) and the fact that D1 and D2 are balanced, (a)-(c) are precisely the ingredients
required to to repeat the argument in Step 1 of the proof of Theorem 5.1.1 to infer that Γ′(0)
is invertible, Γ′(0)−1 : D2 → D1 and

Γ
′(0)−1 ◦ Γ= idD1 .

Thus, by (a), Γ′(0)(D1) ⊂ D2. One of the consequences of repeating the argument con-
tained in Step 1 in Section 5.1.1 is, in view of (c), that Γ′(0)−1 maps (1− 1/ν∗(l))D2 into D2

for every l ∈ �+. As ν∗ is strictly increasing and �+-valued, and as Γ′(0) is injective, this
means that Γ′(0)(D1) contains (1 − 1/s)D2 for arbitrarily large s ∈ �+, whence Γ′(0) maps
D1 onto D2. Hence, Γ′(0) |D1 is a biholomorphism of D1 onto D2. �
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