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ABSTRACT. One of the earliest results in the study of automorphisms and holomorphic mappings
of domains was Poincaré’s proof of the biholomorphic inequivalence of the ball and the polydisk in
Cn; n � 2. This prompted a detailed study of holomorphic mappings of bounded domains in Cn.
We survey a number of these results – many of them due to H. Cartan – in Chapter 1. Extending
Poincaré’s observation, H. Remmert and K. Stein proved a result that implies that there cannot even
be a proper holomorphic map from the polydisc to the ball. In Chapter 2, we focus on the method

of their proof, and prove two Remmert-Stein-type results. In one of these, we extend the classical
Remmert-Stein theorem to a broad class of codomains (which includes the unit ball originally con-
sidered by Remmert and Stein). We then focus on a closer study of the unit ball. We give a proof of
Alexander’s result that every proper holomorphic mapping from the ball in Cn; n � 2, must be an
automorphism. To this end, we focus on the structure of general proper holomorphic mappings, and
on their effect on analytic varieties. We conclude with a proof of Alexander’s theorem.
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CHAPTER 1

Introduction and Some Classical Theorems

In this chapter, we present some results on the complex automorphisms of a bounded domain
in Cn. Our goal in the first section is to establish the famous result of Poincaré, which asserts that
the ball and polydisk are biholomorphically inequivalent in dimensions higher than 1. Therefore,
the direct generalization of the Riemann mapping theorem, does not hold in higher dimensions.
We also explicitly compute the automorphism groups of the ball and the polydisk. We then state a
theorem of Remmert-Stein which shows that the situation when n > 1 is really complicated. The
theorem says that if a domain � has a “local product structure near a point on the boundary”, then
there cannot even be a proper map from � into the ball.

In the next section, we prove a theorem due to Henri Cartan on normally convergent sequences
of automorphisms. The theorem yields a number of results on the structure of the automorphism
group of a bounded domain, which have far reaching consequences. We end the chapter by stating a
deep theorem, again due to H. Cartan, which says that the automorphism group, given the compact-
open topology, becomes a Lie group. Most of the results in this chapter are due to Henri Cartan
[3].

We now recall some elementary definitions. A complex valued function f defined on an open
set � � Cn is said to be holomorphic if at each point a 2 �, there corresponds a neighbourhood
U of a in which f admits a convergent power series expansion in the variables z1; : : : ; zn. We say
F D .f1; : : : ; fm/ W �1 ! �2, �1 and �2 regions in Cn and Cm respectively, is a holomorphic
map if each fj is holomorphic, 1 � j � m. The terms biholomorphism and automorphism are
defined in the usual manner .

1.1. Biholomorphic inequivalence of the ball and polydisk

To compute the automorphism groups of the ball and the polydisk, as in the univariate case, we
require a version of Schwarz’s lemma. The following proposition is an analogue of the infinitesimal
version of Schwarz’s lemma.

PROPOSITION 1.1 (Cartan [2]). Let D be a bounded domain in Cn and F W D ! D be
a holomorphic map. Suppose for some p 2 D, we have F.p/ D p and F 0.p/ D I . Then
F.z/ D z; 8z 2 D.
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2 1. INTRODUCTION AND SOME CLASSICAL THEOREMS

PROOF. We may assume, without loss of generality, that p D 0. Let r1 > 0; r2 <1, be such
that r1B � D � r2B. The power series expansion of F about 0 is of the form

F.z/ D z C P2.z/C : : : :

where Pk is a n-tuple of homogeneous polynomials of degree k.
Let F k be the k-th iterate of F ; specifically, F 1 WD F; F k WD F k�1 ı F . Suppose F.z/ 6� z.

Let N be the smallest integer such that

F.z/ D z C PN .z/C : : : ;

where PN 6� 0.
By induction on k, we see that

F k.z/ D z C kPN .z/ : : : :

Note that F k is a map ofD into itself. Therefore, by Cauchy’s inequalities, the coefficients of each
component function of kPN .z/ are less than or equal to r2r�N1 in absolute value. As k is arbitrary,
PN � 0, a contradiction.

�

DEFINITION 1.2. A set E � Cn is said to be circular if ei�z 2 E whenever z 2 E and � is
real.

PROPOSITION 1.3 (Cartan [2]). Suppose:

(i) �1 and �2 are circular domains, 0 2 �1 \�2,
(ii) F is a biholomorphic map of �1 onto �2,with F.0/ D 0,

(iii) �1 is bounded.

Then F.z/ D F 0.0/z, i.e. F is a linear transformation. In particular, �2 is bounded.

PROOF. Let G = F �1. Fix � 2 R, and define

H.z/ D G.e�i�F.ei�z// .z 2 �1/

As �1 and �2 are circular, H.z/ is a well-defined holomorphic map of �1 into �2 that satisfies
H.0/ D 0 and H 0.0/ D I . By the previous Proposition, H.z/ � z. Therefore,

ei�F.H.z// D F.ei�z/ D ei�F.z/;

for all z 2 �1, and for every real � . Hence, the linear term in the homogeneous expansion of F is
the only one different from 0 and we are done. �
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With the above results at our disposal, we can now compute the automorphism group of the
unit ball and the unit polydisk. We begin with the ball. Every ˛ in the unit disk of C corresponds to
an automorphism �a of the unit disk that interchanges ˛ and 0, namely �˛.�/ D .˛��/

1� N̨�
. The same

thing can be done for the unit ball in Cn. Fix a 2 B. Let Pa be the orthogonal projection of Cn

onto the subspace Œa� generated by a, and let Qa WD I � Pa be the projection onto the orthogonal
complement of Œa�. For instance, P0 D 0 and for a ¤ 0

(1.1) Paz D
hz; ai

ha; ai
a;

where we define hz; ai WD
Pn
jD1 zjaj . Define sa WD .1 � jaj2/1=2 and define

(1.2) �a.z/ WD
a � Paz � saQaz

1 � hz; ai
:

If� WD fz 2 Cnjhz; ai ¤ 1g then �a W �! Cn is holomorphic and clearly B � � as jaj < 1.
Note that when n D 1, (1.2) reduces to an automorphism of the unit disk. The following theorem
summarizes the properties of �a. To keep our notations neat, we shall drop the subscript from the
terms sa, Pa and Qa.

THEOREM 1.4. For every a 2 B, �a has the following properties:

(i) �a.a/ D 0 and �a.0/ D a.
(ii) � 0a.0/ D �s

2P � sQ and � 0a.a/ D �P=s
2 �Q=s.

(iii) The identity

1 � h�a.z/; �a.w/i D
.1 � ha; ai/.1 � hz; wi/

.1 � hz; ai/.1 � ha;wi/

holds for every z 2 B.
(iv) The identity

1 � j�a.z/j
2
D
.1 � jaj2/.1 � jzj2/

j1 � hz; aij2

holds for every z 2 B.
(v) �a is an involution.

(vi) �a is a homeomorphism of B onto B, and �a 2 Aut.B/.

PROOF.

(i) Obvious from (1.2).
(ii) For z 2 B, (1.2) can be written as
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�a.z/ D Œ1C hz; ai C hz; ai
2
C : : : �Œa � .P C sQ/z�

D �a.0/C hz; aia � .P C sQ/z CO.jzj
2/;

and since hz; aia D jaj2Pz, the co-efficient of z in the above expansion is .jaj2 � 1/P �
sQ. This gives the first formula. The second formula follows from

�a.aC h/ D
�Ph � sQh

s2 � hh; ai
:

(iii) We split �a.z/ into its components in Œa� and the one orthogonal to Œa� and substitute in
the left side to get

1 �
ha � Pz; a � Pwi C s2 hQz;Qwi

.1 � hz; ai/ .1 � ha;wi/
:

As P and Q are self-adjoint projections, we can replace Pw and Qw with w. Also,

hz; ai ha;wi D hhz; ai a;wi D jaj2 hPz;wi :

From this the result follows.
(iv) Taking z D w in the previous identity gives this identity. As an obvious consequence, we

have j�a.z/j < 1 iff jzj < 1. Thus, �a maps B into itself and S into itself.
(v) Set  D �a ı �a. Then  is a holomorphic map of B into B with  .0/ D 0, and from (2)

we get
 0.0/ D � 0a.a/�

0
a.0/ D P CQ D I:

By Proposition 1.1,  � I and we are done.
(vi) Clear from the previous parts.

�

The following consequence is trivial but is of great importance.

THEOREM 1.5. Aut.B/ acts transitively on B.

Using these results and Proposition 1.3, we get the following theorem, which proves that there
can be no Riemann mapping theorem when n > 1.

PROPOSITION 1.6. Suppose � is a circular region in Cn, 0 2 �, and some biholomorphic
map F maps B onto �. Then there is a linear transformation of Cn that maps B onto �.

PROOF. If a D F �1.0/, thenF ı�a is a biholomorphic map of B onto� that fixes 0. Therefore,
by Proposition 1.3, F ı �a is linear. �

From this last result, it is clear that the ball and the polydisk cannot be biholomorphically
equivalent, when n > 1.
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THEOREM 1.7 (Poincaré’s theorem). When n > 1, there is no biholomorphic map of B onto
the polydisk U n.

PROOF. Assume we have a biholomorphic map from B onto U n. From the previous proposi-
tion, we would have a invertible linear map which takes B onto U n. As invertible linear maps take
balls onto ellipsoids, this is not possible. �

All unitary transformations are certainly automorphisms of the ball. We now show that the
unitary transformations and the maps �a generate Aut(B).

THEOREM 1.8. Let  2 Aut.B/ and a D  �1.0/. Then, there is a unique unitary transfor-
mation U such that  D U�a.

PROOF. The map  ı �a is an automorphism of B that fixes 0, and is hence a linear map
by Proposition 1.3. As any linear map taking B onto B is unitary, there is an unique unitary
transformation U such that  ı �a D U . As �a is an involution, this gives  D U�a as required.

�

We now compute the automorphism group of the unit polydisk U n. The polydisk is just a
Cartesian product of the unit disk in C. Therefore, applying an automorphism to each component
yields an automorphism of U n. Hence the result below is not surprising.

THEOREM 1.9. Let  2 Aut.U n/. Then, there exists a permutation p W .1; : : : ; n/ !
.1; : : : ; n/, real numbers �1; : : : ; �n, and complex numbers ˛1; : : : ; ˛n; j˛j j < 1 such that

 .z/ D

�
ei�1

zp.1/ � ˛1

1 � ˛1zp.1/
; : : : ; ei�n

zp.n/ � ˛n

1 � ˛nzp.n/

�
:

PROOF. Let ˛ WD  .0/. Define

�˛.z/ WD

�
z1 � ˛1

1 � ˛1z1
; : : : ;

zn � ˛n

1 � ˛nzn
:

�
Then, �˛ 2 Aut.U n/. Replacing  with �˛ ı  we may assume  .0/ D 0. It now suffices to
prove that  is of the form

 .z/ D .ei�1zp.1/; : : : ; e
i�nzp.n//:

By Proposition 1.3,  is linear and therefore writing  as . 1; : : : ;  n/, we have

 k.z/ D

nX
jD1

akj zj ; akj 2 C
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For r < 1, let zj D reiArg.akj /; j D 1; : : : ; n. We have j k.z/j < 1; k D 1; : : : ; n and hencePn
jD1 jakj j < 1=r . As r is arbitrary, we have

(1.3)
nX
jD1

jakj j � 1:

For a given j , consider the sequence z� D
˚
.0; : : : ; 1 � 1

�
; : : : ; 0/

	
�2N where we have 1 � 1

�
in the

j-th place and 0 elsewhere. Every limit point of f .z�/g�2N is on @U n. As

 .z�/ D .1 �
1

�
/.a1j ; : : : ; anj /! .a1j ; : : : ; anj /;

we conclude that the latter point is in @U n. Therefore,

max
kD1;:::;n

jakj j D 1; j D 1; : : : ; n:

Let k.1/ be such that jak.1/;1j D 1. By (1.3), ak.1/;j D 0 for j D 1; : : : ; n. Let k.2/ be such that
jak.2/;2j D 1. Since ak.1/;2 D 0 and ak.2/;j D 0; j ¤ 2, we have k.2/ ¤ k.1/. Thus, if k.j / is
such that jak.j /;j j D 1, then .k.1/; : : : ; k.n// is a permutation of .1; : : : ; n/ and ak.j /;i D 0 for i ¤
j . Let p be the inverse the above permutation. Then, we have k.z/ D ak;p.k/zp.k/; jak;p.k/j D 1.
Combining this with the remarks at the beginning of the proof, we are done. �

We have proved that the ball and polydisk are biholomorphically inequivalent. Now, we define
the concept of a proper map, which is a weaker notion than biholomorphism. The Remmert-Stein
theorem will show that there cannot be proper map from a general class of domains, polydisks
forming a subclass, into the ball.

DEFINITION 1.10. LetX and Y be topological spaces. A continuous map f W X ! X . is said
to be proper if f �1.K/ is compact in X for every compact H � Y .

In the case where F W �1 ! �2 is a proper map, where �1 and �2 are regions in Cn and Cm

respectively, this is equivalent to the requirement that for every sequence fzig in �1 that has no
limit point in �1; fF.zi/g has no limit point in �2.

We now state the classical Remmert-Stein theorem which we had alluded to in the introduc-
tion. We were interested in investigating a generalization that subsumes the following theorem and
yields other interesting corollaries which are not covered by the classical Remmert-Stein theorem.
Hence, we only state the theorem here. We shall present the proofs of a couple of generalizations
of Theorem 1.11 in Chapter 2.

THEOREM 1.11 (Remmert-Stein [6]). Let D be a domain in Cn with the property that 9p 2
@D, positive integers n1, n2, and and open neighbourhood U , p 2 U , such that:

(i) U D U1 � U2.
(ii) Uj is an open subset of Cnj ; j D 1; 2, where n1 C n2 D n.
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(iii) U \D D D1 �D2, Dj domains in Cnj , j D 1; 2, with D2 \ U2 ¤ U2.

Then, there is no proper holomorphic map from D into Bm; m > 0 .

1.2. Automorphisms of bounded domains

We now investigate some general results about automorphisms of a bounded domain. First, we
state some standard results, which will be used in the proof of the main theorem due to Cartan.
The proofs can be found in Chapter 5 of [5]

THEOREM 1.12 (Montel). Let F be a family of of holomorphic functions on a domain � �
Cn such that, for any compact set K � �, there exists MK > 0 satisfying jf .z/j < MK for
z 2 K; f 2 F . Then any sequence ff�g�2N; f� 2 F , contains a subsequence which converges
uniformly on compact subsets of �.

PROPOSITION 1.13. Let f��g be a sequence of continuous open mappings of� � Cn into Cn.
Suppose that �� converges uniformly on compact subsets of � to a map � W � ! Cn. Suppose
that some a 2 � is an isolated point of ��1.�.a//. Then, for any neighbourhood of U of a, there
is a �0 such that �.a/ 2 ��.U / for � � �0.

THEOREM 1.14 (Hurwitz). Let � be a domain in Cn and ff�g�2N be a sequence of holo-
morphic functions on �, which converge uniformly on compact subsets of � to a non-constant
holomorphic function f . Then if f�.z/ ¤ 0 ;8� 2 N, and all z 2 �, respectively, we have
f .z/ ¤ 0; 8z 2 �.

THEOREM 1.15 (Cartan). Let D be a bounded domain in Cn and let ff�g�2N be a sequence
of automorphisms of D. Suppose that f� converges uniformly on compact subsets of D to a
holomorphic map f W D ! Cn. Then, the following properties are equivalent.

(i) f 2 Aut.D/.
(ii) f .D/ 6� @D.

(iii) There exists a 2 D such that the complex Jacobian JC.f /.a/ is non-zero.

PROOF.
(i)) (ii) This is obvious.
(i)) (iii) If f 2 Aut.D/, then f is invertible and f ı f �1 � I and hence

JC.f /.a/JC.f
�1/.f .a// D 1; a 2 D

.
(iii)) (ii) This is a straightforward consequence of the inverse function theorem for holomor-

phic mappings.
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(ii)) (iii) Clearly f .D/ � D and therefore by (ii), there exists a 2 D such that f .a/ D b 2

D. Let g� D f �1� . By Montel’s theorem, we may, by passing to a subsequence, assume that fg�g
converges uniformly on compact subsets of D to a holomorphic map g W D ! Cn. We have
g.b/ D lim�!1 f

�1
� .f .a//. For large �, f�.a/ is close to f .a/ and hence lies in a compact subset

of D. As g� converges uniformly on compact subsets of D, we get that

g.b/ D lim
�!1

g�.f�.a// D a

Let V be a small neighbourhood of b such that g.V / lies in a compact subset of D. Therefore,
there is a compact subset K of D, such that for large �, g�.V / � K. Then, for z 2 V , we have

f .g.z/ D lim
�!1

f�.g�.z// D z:

Hence, f ı g D I on V and therefore the Jacobian of f is non-zero on points of g.V /.
(iii)) (i) Each JC.f�/ is holomorphic onD and converges uniformly on compact subsets ofD

to JC.f /. By hypothesis, JC.f / 6� 0. As each f� is an automorphism, JC.f�.x// ¤ 0 for x 2 D.
If JC.f / is non-constant, then by Hurwitz’s theorem it is never zero. If JC.f / is constant then
obviously it is never zero. Therefore, by the inverse function theorem for holomorphic mappings,
f is an open map and any x 2 D is isolated in f �1f .x/. By Proposition 1.13, we have f .D/ �S
f�.D/ D D. As in the previous part, let g� D f �1� and, without loss of generality, let g�

converge to g uniformly on compact subsets ofD. By repeating the argument in the previous part,
we have g.f .x// D x; 8x 2 D. Therefore, JC.g/.y/ ¤ 0 for y 2 f .D/, and repeating the
argument at the beginning of this part, we conclude g.D/ � D . Hence, f .g.x// D x; 8x 2 D.
Therefore, f 2 Aut.D/.

�

Given a bounded domain in Cn, it is easy to see that the set of automorphisms, equipped with
the compact-open topology, becomes a topological group. We now deduce an important result
about the automorphism group using the above theorem. First we define the notion of a proper
action.

DEFINITION 1.16. Let G be a locally compact topological group and X be a locally-compact
Hausdorff topological space. Let G act continuously on X . We say that the action of G on X is
proper, if the map G �X ! X �X defined by .g; x/ 7! .gx; x/, is proper.

THEOREM 1.17. Let D be a bounded domain in Cn. The action of Aut.D/ on D is proper.

PROOF. Define
G.K;L/ WD ff 2 Aut.D/ W f .K/ \ L ¤ ;g:

We will prove that G.K;L/ is compact. Suppose, for the moment, that this is true. Then, Aut.D/
is locally compact (take K � Int(L)). Any compact set in X �X is contained in a set of the form
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K � K; K � X compact. The inverse image of K � K under the map .g; x/ 7! .gx; x/ is just
G.K;K/ and is hence compact.

Now, let ff�g�2N be a sequence of elements ofG.K;L/. By Montel’s theorem, we may assume
that f� converges uniformly on compact subset ofD to a holomorphic map f . Since f�.K/\L ¤
;, we can find elements a� 2 K; f�.a�/ D b� 2 L. As K and L are compact, by passing to
subsequences, we may assume a� ! a 2 K; b� ! b 2 L. Then f .a/ D b, and by Theorem
1.15, f 2 Aut.D/. Hence, G.K;L/ is compact and we are done. This establishes that the action
of Aut.D/ on D is proper.

�

The above result is a key step in establishing, in conjunction with several ideas in Lie theory,
the following deep result.

THEOREM 1.18 (Cartan). Let D be a bounded domain in Cn. Then Aut.D/ is a Lie group
whose dimension � n2 C n.





CHAPTER 2

Some Generalizations of the Remmert-Stein Theorem

Recall the theorem of Remmert-Stein (Theorem 1.11) that we stated in Chapter 1. In the course
of this project, we found that we could state a more generalized result Theorem 2.1 below, from
which the Remmert-Stein theorem follows. A consequence of Theorem 2.1 is Corollary 2.2, which
is a version of the classical Remmert-Stein Theorem, with the ball replaced by a strictly pseudo-
convex domain. We then present Theorem 2.4 , where the condition Dj \ Uj ¤ Uj fails for
j D 1; 2. We shall conclude this Chapter with an example.

THEOREM 2.1. Let � be a bounded domain in Cm such that @� contains no germs of non-
trivial complex-analytic curves. Let D be a domain in Cn with non-smooth boundary with the
property that 9p 2 @D, positive integers n1; n2, and an open neighbourhood U; p 2 U such that :

(i) U D U1 � U2.
(ii) Uj is an open subset of Cnj ; j D 1; 2, where n1 C n2 D n.

(iii) U \D D D1 �D2, Dj domains in Cnj , j D 1; 2, with D2 \ U2 ¤ U2.

Then, there is no proper holomorphic map from D into �.

PROOF. Let f D .f1; : : : ; fm/ be a proper holomorphic map of D into �. Our strategy is to
arrive at a contradiction. Write z as .�; !/, � 2 Cn1 and ! 2 Cn2 . Let !� 2 D2 and suppose !� !
! 2 .@D2/ \ U2. For j D 1; : : : ; m, the functions � 7! fj .z; !�/ define holomorphic functions
�j;� on D1, with

P
j�j;�j

2 bounded. By Montel’s theorem, we may assume, by passing to a sub-
sequence, that �j;� ! �j uniformly on compact subsets of D1. For any � 2 D1; f.�; !�/g�2N has
no limit point in D. Since f is proper, ff .�; !�/g�2N, where f .�; !�/ D .�1;�.�/; : : : ; �m;�.�//,
has no limit point in �. Hence, ˆ WD .�1.�/; : : : ; �m.�// 2 @� 8� 2 D1. As D1 does not
contain any germs of non-trivial complex-analytic curves, it does not contain non-trivial analytic
disks. Therefore, for each connected component of D1 \ ƒ, say K˛.ƒ/, where ƒ is a complex
line in Cn1 , ˆjK˛.ƒ/ � constant. This proves that @�j

@�p
� 0 .p D 1; : : : ; n1/. Now, by Weierstrass’

theorem, defining � WD .�1; : : : ; �n1/, we conclude that

@fj .�; !�/

@�p
�!

@�j

@�p
D 0:

Hence, for p D 1; : : : ; n1,
@fj .�;!�/

@�p
tends to 0 if ! tends to a point of .@D2/ \ U2. Therefore,

for fixed � 2 D1, the function
11
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! 7�!

8<:
@fj .�;!/

@�p
if ! 2 D2 \ U2,

0 if ! 2 U2 nD2.

is holomoprhic on U2 by Rado’s theroem. As U2�D2 is non-empty, we conclude that @fj .�;!/
@�p/

� 0

on D1 � D2, p D 1; : : : ; n1. Hence, @fj
@�p
� 0 on D; p D 1; : : : ; n1. Therefore, the map f is

constant on any connected component of D1 � f!0g, !0 2 D2, and D1 � f!0g is not compact
in D. Hence, f �1ff .�0; !0/g is non-compact when .�0; !0/ 2 D1 � D2, which contradicts the
properness of f .

�

From Theorem 2.1, it is clear that the classical Remmert-Stein Theorem, with the ball replaced
by a strictly pseudo-convex domain, will follow if we could prove that a strictly pseudo-convex
domain contains no non-trivial analytic disks on the boundary.

COROLLARY 2.2. The conclusion of Theorem 1.11 still holds, if the ball is replaced by a
strictly pseudo-convex domain � in Cm.

PROOF. Let � be a defining function for �. Let ˆ D .�1; : : : ; �m/ be an analytic disk on the
boundary of �. Then �.�1; : : : ; �m/ � 0. A straightforward computation reveals that,�

@ˆ

@z�

�T
HC.ˆ.�//

"
@ˆ

@z�

#
� 0:

By the strict pseudo-convexity of �, we must have @ˆ
@z�
� 0. Therefore, ˆ is a trivial analytic

disk. �

In the proof of Theorem 2.1, we had used the fact that U2 n D2 is a non-empty open set and
hence a set of uniqueness to conclude that @fj .�;!/

@�p/
� 0 on D1 �D2, p D 1; : : : ; n1. Lemma 2.3

shows the existence of sets of uniqueness which are, in some sense, thinner than open sets.

LEMMA 2.3. Let U be a domain in Cn and let V be a real n-dimensional sub-manifold of U
such that, Tp.V / \ iTp.V / D 0;8p 2 Tp.V /, i.e. Tp.V / has no non-trivial complex sub-space.
Then, for every f 2 O.U / such that, f � 0 on V , we have f � 0 on U , i.e. V is a set of
uniqueness.

PROOF. Let p 2 V and let L1 W Tp.V / ! Rn be a real isomorphism. Define L W Cn ! Cn

as z 7! L1.�p.z//C iL1.�i.z � �p.z//. As Tp.V /˚ iTp.V / D Cn, any z 2 Cn can be written
as z D x C iy; x; y 2 Tp.V /, in an unique way; and we may define �p.z/ WD x. Hence, the
map L is well-defined and is a complex isomorphism with L.Tp.V // D Rn. So, we can assume,
without loss of generality, that Tp.V / D Rn. But, f � 0 on V and therefore all real derivatives
of f vanish at p. Hence, all first order complex derivatives of f vanish at p. Since p 2 V
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was arbitrary, we can repeat the argument with @f

@zj
.j D 1; : : : ; n/ in place of f . Proceeding

inductively, we conclude that at a point p 2 V , all derivatives of all orders vanish. Hence, f � 0
on U as required. �

We now exploit Lemma 2.3 to prove a generalization of the Remmert-Stein theorem, in which
the set D2 n U2 needs to contain only a maximally totally-real submanifold.

THEOREM 2.4. Let D be a domain in Cn with non-smooth boundary with the property that
9p 2 @D, positive integers n1; n2 and an open neighbourhood U; p 2 U such that :

(i) U D U1 � U2.
(ii) Uj is an open subset of Cnj ; j D 1; 2, where n1 C n2 D n.

(iii) U \D D D1 �D2, Dj domains in Cnj , j D 1; 2, with D2 \ U2 D U2.

Suppose there exists a subdomain V0 � U2 such that U2 n D2 contains a maximally totally-real
submanifold of V0, then there is no proper holomorphic map from D into Bm.

PROOF. Let f D .f1; : : : ; fm/ be a proper holomorphic map of D into Bm. Write z as .�; !/,
� 2 Cn1 and ! 2 Cn2 . Let !� 2 D2 and suppose !� ! ! 2 .@D2/ \ U2. For j D 1; : : : ; m,
the functions � 7! fj .z; !�/ define holomorphic functions �j;� on D1 with

P
j�j;�j

2 bounded.
By Montel’s theorem, we may assume by passing to a sub-sequence that �j;� ! �j uniformly
on compact subsets of D1. For any � 2 D1; f.�; !�/g�2N has no limit point in D. Since f is
proper, ff .�; !�/g�2N, where f .�; !�/ D .�1;�.�/; : : : ; �m;�.�//, has no limit point in Bm. Hence,
ˆ WD .�1.�/; : : : ; �m.�// 2 @Bm 8� 2 D1. Therefore, jˆ.�/j D 1; 8� 2 D1. As a result, each
�j � constant, j D 1; : : : ; m. This proves that @�j

@�p
� 0 .p D 1; : : : ; n1/.

Now, by Weierstrass’ theorem, defining � WD .�1; : : : ; �n1/, we conclude

@fj .�; !�/

@�p
!

@�j

@�p
D 0:

Hence, for p D 1; : : : ; n1,
@fj .�;!�/

@�p
tends to 0 if ! tends to a point of .@D2/ \ U2. Hence, for

fixed � 2 D1, the function

! 7�!

8<:
@fj .�;!/

@�p
if ! 2 U2 \D2,

0 if ! 2 U2 nD2.

is holomoprhic onU2 by Rado’s theroem. As V0 � U2 contains a maximal totally-real submanifold
on which the above function vanishes, we conclude @fj .�;!/

@�p/
� 0 on D1 � D2 , p D 1; : : : ; n1.

Since D is connected, @fj
@�p
� 0 on D; p D 1; : : : ; n1. Arguing exactly as in the end of the proof

of Theorem 2.1, we are done.
�
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It would be instructive to see an example of the sort of domain considered in Theorem 2.4.

EXAMPLE 2.5. Write .z; w/ 2 C2 as .xC iy; uC iv/. LetD WD B nV , where V WD f.x; y/ W
jxj < 1=100; jyj < 1=100g. Let U be a polydisk centred at the origin with each component disk
being the unit disk in C. Then U \D is

D n f.x; 0/ W jxj < 1=100g � D nM;

where M WD f.u; 0/ W juj < 1=100g. Then, M is a maximally totally real sub-manifold of U2
and hence the hypothesis of Theorem 2.4 is satisfied at p D .0; 0/. The hypothesis of the classical
Remmert-Stein Theorem are not satisfied at any point of @D (there is no loss of generality in
assuming p D 0 and U is a polydisk).



CHAPTER 3

Analysis of Proper Maps

In this chapter, we study the structure of proper maps. We begin by proving the Two Function
Lemma, of which the Weierstrass Preparation Theorem is a simple corollary. Then, we use the
Preparation theorem to derive some interesting results on analytic subvarieties. In the next section,
we use the results on analytic varieties to study the structure of proper maps. The main result
we prove is that, a proper map, between domains of the same dimension, has associated with it a
“multiplicity”, which gives the number of pre-images of a regular value. The image of a subvariety
under such a map is also a subvariety. These results will be used in the next chapter, and is vital in
the study of automorphisms and proper maps.

3.1. Analytic Varieties

We first generalize the definition of the order of a zero.

DEFINITION 3.1. Suppose� is a domain in Cn; f 2 O.�/; a 2 � and f .a/ D 0. If f is not
identically zero, then there are vectors b 2 Cn such that the one-variable function � 7! f .aC�b/

does not vanish identically in any neighbourhood of � D 0; and hence has a zero of positive
integral order k at � D 0. The smallest k which can be obtained by varying b is called the order
of the zero of f at a.

If f has a zero of order m at 0, we may choose co-ordinates so that f .00; zn/ has a zero of
order m at zn D 0; z0 2 Cn�1; zn 2 C. We also write polydisks in Cn in the form, � D �0 ��n,
where�0 is a polydisk in Cn�1 and�n is a disk in C. We assume n > 1 for the rest of this section.

LEMMA 3.2 (Two-Function Lemma). Suppose� is neighbourhood of 0 in Cn; f 2 O.�/; g 2
O.�/, and f .00; zn/ has a zero of multiplicity m at zn D 0. Then:

(i) There is a polydisk � D �0 ��n � �, with centre at 0, such that f .z0;: / has, for each
z0 2 �0, exactly m zeros in �n, counted with multiplicity.

(ii) If these zeros are denoted by ˛1.z0/; : : : ; ˛m.z0/, then the elementary symmetric functions
of the unordered m-tuple

fg.z0; ˛j .z
0// W 1 � j � mg;

are holomorphic functions in �0.

15
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PROOF.

(i) Since the zeros of a holomorphic function in one-variable are isolated and f has a zero
of order m at 0, we can choose a disk �n of radius r around the origin such that, f .00;: /
has no zero in �n n f0g. Hence, there exists a ı > 0, and a polydisk �0 in Cn, centred at
00, such that jf .z0; �/j > ı whenever z0 2 �0 and j�j D r , and such that the closure of
� WD �0 ��n lies in �. For every h 2 O.�/ and z0 2 �0, we define

Jh.z
0/ WD

1

2�i

Z
j�jDr

�
hDnf

f

�
.z0; �/d�;

where Dnf D
@f

@zn
. The denominator is bounded away from zero on the path of integra-

tion. Thus, Jh is continuous in�0, and by Morera’s theorem, we see that, f 2 O.�0/. By
the residue theorem, when h � 1; Jh.z

0/ counts the number of zeroes of f .z0;: / in �n.
Therefore, Jh.00/ D m. Being a continuous integer-valued function in the connected set
�0, Jh is constant.

(ii) For an arbitrary h, by the residue theorem, we have

(3.1) Jh.z
0/ D

mX
jD1

h.z0; ˛j .z
0//

where ˛j .z0/0s are the zeros of f .z0;: / in �n. Therefore, the sum in (3.1) is holomorphic
in �0. If � 2 C and j�j is sufficiently small, then j�gj < 1 on some neighbourhood of �0,
and the reasoning above can be applied to h D log.1� �g/. Substituting for h in the sum
(3.1), and exponentiating, we see that G� 2 O.�0/, where

G 0� WD

mY
jD1

�
1 � �g.z0; ˛j .z

0//
�
:

For each z0 2 �0; G�.z0/ is a polynomial in �. The coefficient of �k is

1

2�i

Z
�

G�.z
0/��k�1d�;

where is � is a small circle around the origin. Since G�.z0/ 2 O.�0//, the above integral
defines a holomorphic function in �0. The coefficients �k are, upto a sign, precisely the
elementary symmetric functions of g.z0/; ˛j .z0/; j D 1; : : : ; m.

�

THEOREM 3.3 (Weierstrass Preparation Theorem). Suppose� is neighbourhood of 0 in Cn; f 2
O.�/; f .00; zn/ has a zero of multiplicitym at zn D 0, and� D �0 ��n is as before. Then there
exists h 2 O.�/; h has no zero in �, and

W.z/ D zmn C b1.z
0/zm�1n C � � � C bm.z

0/;
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with bj 2 O.�0/; bj .00/ D 0, such that

f .z/ D W.z/h.z/ .z 2 �/:

PROOF. If we apply the Two-Function Lemma with g.z/ D zn, and if we define

W.z/ D W.z0; zn/ WD

mY
jD1

�
zn � ˛j .z

0/
�
;

we see that W is a monic polynomial in zn whose coefficients bj are holomorphic in �0. Also,
˛j .0

0/ D 0, for 1 � j � m. Thus, W.00; zn/ D zmn , and bj .00/ D 0. We define

h.z/ D
1

2�i

Z
j�jDr

�
f

W

�
.z0; �/

d�

� � zn
.z 2 �/;

where r is as in the proof of the two-function lemma. W has no zeros on the path of integration
and W.z0;: / is a polynomial with the same zeros as f .z0;: /. Therefore, h 2 O.�/, and Riemann’s
removable singularities theorem shows that f D W h in �. �

We now define the important notion of an analytic subvariety.

DEFINITION 3.4. Let� be an open set in Cn. A set V � � is said to be an analytic subvariety
of � if :

(i) V is closed in �, and
(ii) every point p 2 � has a neighbourhood N.p/ such that

V \N.p/ D Z.f1/ \ � � � \Z.fr/

for some f1; : : : ; fr 2 O.N.p//, where Z.f / denotes the zero set of f . We call Z.f /
the zero-variety of f .

EXAMPLE 3.5. (i) Let� be a domain in Cn. The empty set and� are subvarieties of�.
(ii) If � is a domain in C then the only non-trivial subvarieties of � are the discrete subsets.

(iii) Finite unions and intersections of subvarieties are also subvarieties.

We now prove the Projection Theorem. As before, we denote points in Cn as .z0; zn/ and
polydisks � as �0 ��n. Let � denote the projection of Cn onto Cn�1; .z0; zn/ 7! z0.

THEOREM 3.6 (The Projection Theorem). Let V be an analytic subvariety of a domain � �
Cn; n > 1, let p D .p0; pn/ be a point of V , and let

L WD f.p0; �/ W � 2 Cg:

If p is an isolated point of L\ V , then p is the centre of a polydisk � � � such that �.V \�/ is
an analytic subvariety of �.�/.
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PROOF. We may assume that p is the origin of Cn and that � is a polydisk in which V is
defined by holomorphic functions f1; : : : ; fr . By hypothesis, there is a fi , say fr , for which the
origin C is an isolated zero of fr.00;: /. For emphasis, we denote fr by F .

There is a polydisk, � D �0 � �n � �, with centre at 0, such that the conclusion of Two-
Function Lemma holds for �; F , and any g 2 O.�/. Therefore, the product P defined by

P.z0/ D

mY
jD1

g.z0; ˛j .z
0// .z0 2 �0/;

is holomorphic in �0, where ˛j .z0/; .1 � j � m/ are the zeros of F.z0;: /.
Fix z0 2 �0. It is clear that P.z0/ D 0 iff some ˛j .z0/ is also a zero of g.z0; :/ iff F and g have

a common zero in � that lies in the pre-image of z0 under � . Hence,

(3.2) �.� \Z.F / \Z.g// D Z.P /:

Since P 2 O.�0/, we conclude that �.� \ Z.F / \ Z.g// is an analytic subvariety of �0.
We may assume that r > 1. Let .cij / be a rectangular matrix of complex numbers, with .r � 1/m
rows and .r � 1/ columns in which every square submatrix of size .r � 1/ � .r � 1/ has non-zero
determinant. Define

gi WD

r�1X
jD1

cijfj .1 � i � rm �m/;

Applying (3.2) to gi in place of g, we see that each of the sets Ei WD �.�\Z.F /\Z.gi// is
a subvariety of �0. We claim that

(3.3) �.� \ V / D
\
i

Ei :

Let z 2 � \ V . Then z 2 Z.gi/ for each i , and z 2 Z.F /. Hence, �.z/ 2 Ei for each
i . Thus, the left side of (3.3) is a subset of the right. For the opposite inclusion, let z0 2

T
Ei .

To each of the .r � 1/m values of i , there corresponds an ˛k.z0/ such that gi.z0; ˛k.z0// D 0.
Since k runs over only m values, there is some k and some set I of r � 1 distinct i ’s, for which
gi.z

0; ˛k.z
0// D 0. Therefore, the corresponding system of equations

r�1X
jD1

cijfj .z
0; ˛k.z

0// D gi.z
0; ˛k.z

0// D 0 .i 2 I /

has a unique solution, by our choice of .cij /. Thus, fj .z0; ˛k.z0// D 0 for all j and therefore
z0 2 �.� \ V /, proving our claim. Since each Ei is a subvariety of �0, the same is true of their
intersection and we are done. �
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We now use the Projection Theorem to prove the finiteness theorem. The finiteness theorem is
used in the next section to prove that a proper map cannot “decrease dimension”.

THEOREM 3.7. Every compact analytic subvariety of Cn is a finite set of points.

PROOF. The proof is by induction on the dimension. When n D 1, the result follows from
the fact that the zero set of a non-trivial analytic function of one variable is discrete. Assume that
n > 1 and that the theorem is true for Cn�1. Let V be a compact subvariety of Cn. Pick z0 2 �.V /,
and define

L WD f.z0; �/ W � 2 Cg:

We identify L with C. We see that L \ V is a compact subvariety of C and is hence finite. Let
pi .1 � i � m/ be points of L\ V . By the projection theorem, each pi is the centre of a polydisk
�i � Cn such that �.V \ �i/ is a subvariety of �.�i/. The part of V that is not covered by
�1 [ : : : �m is compact, and hence has a positive distance from L. Hence, z0 is the centre of a
polydisk

�0 � �.�1/ \ � � � \ �.�m/;

so small that all points of V that project into �0 lie in �1 [ : : : �m. Therefore,

�0 \ �.V / D �0 \

m[
iD1

�.V [�i/:

Thus,�0[�.V / is a sub-variety of�0. Since�0 is a neighbourhood of the arbitrarily chosen point
z0 2 �.V /, and since �.V / is compact, it follows that �.V / is a subvariety of Cn�1. Hence, by our
induction hypothesis, �.V / is a finite set. Since each point of �.V / is the image of only finitely
many points of V under � , we conclude that V is the union of finitely many finite sets. �

3.2. Structure of proper holomorphic maps

We now use the results on analytic varieties to study the structure of proper maps. Let �1 and
�2 be domains in Cn and Cm respectively, and suppose F W �1 ! �2 is a proper holomorphic
map. If w D .w1; : : : ; wm/ 2 �2, then F �1.w/ is a subvariety of�1, being the intersection of the
zero sets of the functions fi �wi , where fi is the i -th component of F . Since F �1.w/ is compact
by the properness of F , Theorem 3.7 shows that F �1.w/ is finite. The number of inverse images
will be denoted by #.w/.

THEOREM 3.8. When m < n, there cannot be a proper holomorphic map from �1 into �2.

PROOF. Suppose F is a proper holomorphic map from �1 into �2. Let DF denote the real
derivative of F , viewing F as a map from �2 � R2n into R2m. The operator DF cannot have
rank less than 2n at all points of �1. Otherwise, the rank of the linear operator DF would be at
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most 2m � 1, and hence by the rank theorem, there is a w 2 �2 such that F �1.w/ contains a
1-dimensional manifold and hence an infinite set. Therefore, n � m. �

We now study the most interesting case,m D n. We define the terms critical value and regular
value as usual. We call the set of all critical values the critical set. It is easy to see that F is a closed
map. We summarize, without proof, some simple results which we need for the main theorem. The
proofs can be found in Chapter 15 of [7].

PROPOSITION 3.9. With notation as above, we have :

(i) F.�1/ D �2 and
(ii) the regular values of F form a connected open set that is dense in �1.

In the next result, we do not assume that F is proper.

PROPOSITION 3.10. Suppose � is a domain in Cn, F W � ! Cn is holomorphic map, and
F �1.w/ is compact for every w 2 Cn. Then every neighbourhood of any p 2 � contains a
connected neighbourhood D of p such that the restriction of F to D is a proper map of D onto
F.D/. Consequently, F is an open map.

The next theorem is a direct generalization of a well known result for holomorphic functions
of one variable.

THEOREM 3.11 (Osgood’s Theorem). If� is a domain in Cn and F W �! Cn is holomorphic
and injective, then F is a biholomorphism.

We now come to the main structure theorems.

THEOREM 3.12. Suppose �1 and �2 are domains in Cn, and F W �1 ! �2 is a proper
holomorphic map. Then there is an integer m such that #.w/ D m when w is a regular value, and
#.w/ < m when w is a critical value .

PROOF. Let w0 2 �2, let #.w0/ D k; F �1.w/ D fz1; : : : ; zkg. There are open balls Qi with
centre zi , whose closures are disjoint and lie in �1. We set

E WD �1 n .Q1 [ � � � [Qk/ :

As F is proper, F is a closed map, hence F.E/ is closed in�2, so that w0 is the centre of an open
ball N � �2 n F.E/. Define

Di WD Qi \ F
�1.N / .i D 1; : : : ; k/:

Let K be a compact subset of N . Since no boundary point of Qi maps into N ,

Di \ F
�1.K/ D Qi \ F

�1.K/;
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and the latter set is compact. Hence, F W Di ! N is proper, for each i . The restriction of F to any
connected component � of Di is proper and hence, by Proposition 3.9, F.�/ D N ; but w0 has
only one inverse image in Di and therefore each Di is connected. Furthermore, F maps no pint
outside D1 [ � � � [Dk into N , since N does not intersect F.E/.At this point, we have established
the following,

.�/ Fact. If w0 2 �2, #.w0/ D k; F �1.w0/ D fz1; : : : ; zkg, then w0 has a neighbourhood
N and the zi ’s have disjoint connected neighbourhoods Di such that F.Di/ D N for
1 � i � k, and F �1.N / D D1 [ : : :Dk. Moreover, the Di ’s can be taken to lie in
prescribed neighbourhoods of the points zi .

Now let w0 be a regular value of F . By the inverse function theorem, the Di ’s can be chosen
so that F is injective on eachDi . From .�/, we see that, #.w/ D #.w0/ for each w 2 N . Since the
set of regular values is connected (Proposition 3.9), there is an m which satisfies the conclusion of
the theorem for regular values. For an arbitrary w0 2 �2, we see that N contains a regular value
by Proposition 3.9. Hence, .�/ implies that #.w0/ � m for every w0 2 �2. If #.w0/ D m, then F
is injective on each Di . By Osgood’s theorem, w0 is a regular value of F . �

THEOREM 3.13. With the same hypothesis as above, F.V / is an analytic subvariety of �2,
whenever V is an analytic subvariety of �1.

PROOF. We first prove that the critical set of F is a zero-variety. Let w0 be a regular value
of F . The inverse function theorem and .�/ show that there are holomorphic maps pi W N !
Di .1 � i � m/ that invert F . Therefore, the product

 .w/ WD

mY
iD1

JC.pi.w//

is holomorphic in�2nF.M/, where JC denotes the complex Jacobian and whereM D Z.JC.F //
, and has no zero in this region. For points in F.M/, we set  to be zero. If we could prove that
 is continuous, then by Rado’s theorem,  2 O.�2/ and F.M/ would be a zero-variety. To this
end, choose w0 2 F.M/; z1 2 M such that F.z1/ D w0, and fix " > 0. We apply .�/ with the
neighbourhoodD1 of z1 chosen so small that, jJ j < " inD1. At least one factor in the definition of
 is then of absolute value < " inN and the others are bounded inN proving that  is continuous
at w0.

For the general case, let g 2 O.�1/ and let maps p1; : : : ; pm be as before. The product

h.w/ WD

mY
iD1

g.pi.w//;

is then holomorphic in�2 nF.M/. IfK is compact in�2, and w 2 K nF.M/, then pi.w/ lies in
the compact set F �1.K/ for each i . Thus, h is bounded on K n F.M/. By Riemann’s removable
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singularities theorem, h extends to a holomorphic function on �2 and we have F.Z.g// D Z.h/,
proving that F.Z.g// is a subvariety of �2.

Assume next that V D Z.f1/ \ : : : Z.fr�1/, where f1; : : : ; fr�1 2 O.�1/. Define

gi WD

r�1X
jD1

cijfj .1 � i � rm �m/;

where .cij / is the matrix exactly as in the proof of the Projection Theorem. Arguing exactly as in
the proof of the Projection Theorem, we get

F.V / D
[
i

F.Z.gi//:

This proves that that F.V / is a subvariety of �2, whenever V is globally defined in � as an
intersection of zero-varieties. For the general case, pick w0 2 F.V /, and choose D1; : : : ;Dk; N

as in checkpoint, where the Di ’s are chosen so that the preceding special case can be applied to
show that F.V \Di/ is a subvariety of N , for each i . Since

N \ F.V / D

k[
iD1

F.V \Di/;

we are done.
�



CHAPTER 4

Alexander’s Theorem

We have shown earlier that there is no direct generalization of the Riemann mapping theorem
in Cn; n > 1 (Theorem 1.7). We also proved that the automorphism group of the ball is transi-
tive (Theorem 1.5). It turns out that transitivity is very special and in fact characterizes the ball
uniquely, up to biholomorphism, among bounded smooth domains. In this chapter, we exploit the
transitivity of the ball to prove a fascinating theorem, due to Alexander. The theorem states that
for n > 1, any proper holomorphic map from the unit ball into itself is automatically an automor-
phism!

THEOREM 4.1 (Alexander [1]). If n > 1, and F a proper holomorphic map of B into B, then
F 2 Aut.B/.

As the proof of Alexander’s theorem requires a lot of work, the proof is presented in the final
section. In the first section, we summarize some simple consequences of the classical Schwarz’s
lemma for the unit disk in C. In the next section, we use these results to prove the main results
needed for the proof of Alexander’s theorem.

4.1. Consequences of Schwarz’s lemma

We now state some simple consequences of Schwarz’ lemma. The first one involves balanced
sets, i.e., sets E � Cn in which �z 2 E, j�j � 1, when z 2 E. For the proofs, check Chapter 8
and 15 of [7].

THEOREM 4.2. Suppose that :

(i) �1 and �2 are balanced regions in Cn and Cm respectively,
(ii) �2 is convex and bounded,

(iii) F W �1 ! �2 is holomorphic.

Then

(i) F 0.0/ maps �1 into �2, and
(ii) F.r�1/ � r�2 .0 < r � 1/ if F.0/ D 0.

THEOREM 4.3. If F W Bn ! Bn is holomorphic and F 0.0/ is an isometry of Cn, then F.z/ D
F 0.0/z; 8z 2 Bn.

23



24 4. ALEXANDER’S THEOREM

THEOREM 4.4. If F W Bn ! Bm is holomorphic, a 2 Bn, and F.a/ D b, then

j�b.F.z//j � j�a.z/j .z 2 Bn/:

Equivalently,
j1 � hF.z/; F.a/i j2

.1 � jF.z/j2/.1 � jF.a/j2/
�

j1 � hz; ai j2

.1 � jzj2/.1 � jaj2/
:

Denote

Dz WD f�z W � 2 C; j�zj < 1g:

THEOREM 4.5. Suppose :

(i) �1 and �2 are regions in B, 0 2 �1 \�2,
(ii) F is a biholomorphic map of �1 into �2,

(iii) some point p 2 �1; p ¤ 0, has a neighbourhood Np � �1 with the property that
Dz � �1 and DF.z/ � �2 when z 2 Np.

Then, F extends to an unitary operator on Cn.

LEMMA 4.6. If F W B! B is holomorphic, F.0/ D 0, and j.JCF /.0/j D 1, then F is unitary.

LEMMA 4.7. Let S WD @B and assume n > 1. If 0 < t < r < 1; � 2 S; a D r�; � is a
region such that

fz 2 B W t < Re hz; �ig � � � B;

and ı D .1�r/.1Ct/

.1�rt/
, then �a.�/ contains :

(i) all w 2 B with j hw; �i j < 1 � ı, and
(ii) all D�, where � 2 S and j h�; �i j < 1 � ı.

4.2. The main results

In this section, we present the two main results needed to prove Alexander’s theorem. In the
remainder of this report we will use S to denote @B.

THEOREM 4.8. Let n > 1. Suppose, for i D 1; 2, that�i is a sub-domain of B whose boundary
@�i contain an open set �i of S , and that F is a biholomorphic map of �1 onto �2. If there is a
sequence fakg in�1, converging to a point ˛ 2 �1 which is not a limit point of B\ @�1, such that
the points bk WD F.ak/ converge to a point ˇ 2 �2 which is not a limit point of B \ @�2, then F
extends to an automorphism of B.

PROOF. Let a0
k

and b0
k

be such that ak D a0kjakj and bk D b0kjbkj. We can choose, 0 < t < 1
such that, for large k, �1 contains all z 2 B with t < Rehz; a0

k
i, and �2 contains all w 2 B with

t < Rehw; b0
k
i; also t < jakj; t < jbkj.
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Define Gk WD �bk ı F ı �ak . Then, Gk is a biholomorphic map of �k1 WD �ak.�1/ onto
�k2 WD �bk.�2/, with Gk.0/ D 0. By Lemma 4.7, �1 and �2 contain a ball .1 � ık/B, where
ık ! 0 as k !1. Preceding Gk and G�1

k
by a scaling, and applying Theorem 4.2, we get

jJCGk.0/j � .1 � ık/
�n; JCG

�1
k .0/j � .1 � ık/

�n:

Hence, 1 � ık � jJC.0/j
1
n � .1 � ık/

�1. On a fixed �k1 , the sequence fG�g��k converges,
uniformly on compact subsets of �k1 to a holomorphic map G. By Lemma 4.6, G extends to an
unitary operator U on B. Fix 0 < c < 1

100
. For each k, let Yk be the set of all z; 0 < jzj < 1 � c

such that Dz � �
k
1 and DUz � �

k
2 . By Lemma 4.7, Yk increases to B. Therefore, we can choose

a k, fixed from now, such that

jGk.z/ � Uzj < c if jzj � 1 � c;

and Yk contains an open ball of radius 2c. Let p be its centre. If jz �pj < c and w D Gk.z/, then
Dz � �

k
1 , and since

jU �1w � pj D jw � Upj D jGk.z/ � Uz C Uz � Upj < 2c;

We have U �1w 2 Yk , hence Dw � �k2 . Applying theorem 4.5 to Gk, we get that Gk is unitary
and as F D �bk ıGk ı �ak ; we have F 2 Aut.B/: �

For ˛ > 1 and � 2 S , let �˛.�/ denote the set of points in Cn such that

j1 � hz; �ij <
˛

2
.1 � jzj2/:

Clearly, �˛.�/ � B.

DEFINITION 4.9. A function F W B! C is said to have admissible limit orK-limit � at � 2 S ,
if for ever ˛ > 1, and every sequence fzig � �˛.�/ that converges to �; F.zi/! �.

We now state a theorem of Koranyi and Vági, on the existence of admissable limits. Their
result is applicable to a much more general setting. However, even for B, the proof relies on ideas
quite divergent from those discussed here. Hence, we direct the reader to a proof given in Chapter
5 of [7].

THEOREM 4.10 (Koranyi-Vági Theorem). Let f 2 O.B/ be a non-zero holomorphic function.
Then for almost every (with respect to the Lebesgue Measure on S ) � 2 S , the admissible limit of
f exists, and is non-zero.

LEMMA 4.11 (Henkin [4]). Suppose that F W B! B is proper holomorphic map, with F.0/ D
0. Then F has a continuous extension to the closure of B, and there is a constant A <1 such that

F.�˛.�// � �A˛.F.�//;

for every � 2 S and every ˛ > 1.
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PROOF. For w 2 B, let fpi.w/g be the inverse images of w under F . Define

�.w/ D max
i
jpi.w/j

2 .w 2 B/:

Then � 2 C.B/; � < 1. As � is plurisubharmonic outside the critical set of F and the critical set
is a zero-variety (Theorem 3.13), we conclude, by Riemann’s removable singularities theorem for
plurisubharmonic functions, that � is plurisubharmonic in B. Since F is proper, there exists c < 1
such that jzj � c whenever jF.z/j � 1

2
. Thus, �.w/ � c2 if jwj � 1=2 and therefore

jpi.w/j
2
� �.w/ � 1 � c1.1 � jwj

2/ .w 2 B//;

where c1 > 0 is chosen so that the right side is c2 when jwj D 1
2
. Hence, there is a constant

A <1, such that

(4.1) 1 � jF.z/j2 � A.1 � jzj2/ .z 2 B/:

From Theorem 4.4, F satisfies

j1 � hF.z/; F.a/i � Aj1 � hz; aij;

for all z; a 2 B. When z and a tend to the same boundary point, the right side tends to zero, and
hence so does the left. Hence, F extends continuously to B. Since F.0/ D 0, by Theorem 4.2, we
get jF.z/j2 � jzj2 and hence

1

1 � jF.z/j2
�

1

1 � jzj2
:

Multiplying with (4.1) gives

j1 � hF.z/; F.�/ij

1 � jF.z/j2
� A
j1 � hz; �i

1 � jzj2
;

for z 2 B; � 2 S . Hence, F.�˛.�// � �A˛.F.�//. �

4.3. Proof of Alexander’s theorem

We now give the proof of Alexander’s theorem.

PROOF. We may assume thatF.0/ D 0. Let the multiplicity ofF bem, and let p1.w/; : : : ; pm.w/
be as before. F extends continuously to B, hence we can extend the definition of #.w/ to points in
S . The first part of the proof is to prove that there is a point w 2 S such that #.w/ D m.

Step 1. #.w/ � m for almost all � 2 S .
Let ƒ be a linear transformation on Cn that separates the points pi.w0/ for some regular value
w0 2 B, i.e., ƒpi.w0/ ¤ ƒpj .w0/; i ¤ j . By Riemann’s removable singularities theorem, there
is an h 2 H1.B/ such that

h.w/ D
Y
i<j

�
ƒpi.w/ �ƒpj .w/

�2
;
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for every regular value of F , and by our choice of ƒ, h 6� 0. By Theorem 4.10, for almost every
� 2 S , the admissible limit of h exists and is non-zero. Let �0 be one such point. There is an
approach region �˛.�/ and a ı > 0 such that jh.w/j > ı on �˛.�/. Therefore, every point in
�˛.�/ is a regular value of F , and hence by the definition of h, there exists " > 0 and functions
pi 2 O.�˛.�//, which invert F , and such that

jpi.w/ � pj .w/j > " .w 2 �˛.�/ i ¤ j /:

Let fwkg be a sequence in �˛.�/ that converges to �. We may assume that limk!1 pi.wk/

exists for 1 � i � m. Therefore, we get m distinct points, �i WD limk!1 pi.wk/ on S such that
F.�i/ D �. Thus, #.w/ � m.

Step 3. #.w/ � m for almost every � 2 S .
We can find a countable class of linear functionals ˆ, on Cn, such that every finite set of points in
Cn is separated by some ƒ 2 ˆ. Define

(4.2) Qƒ.t; w/ WD

mY
iD1

.t �ƒpi.w// ;

for ƒ 2 ˆ; t 2 C, and w a regular value of F . The coefficients gk;ƒ.w/ in the expansion

(4.3) Qƒ.t; w/ D t
m
C

m�1X
kD0

gk;ƒ.w/t
k;

are polynomial in ƒpi.w/ and hence, extend to functions in H1.B/ by Riemann’s removable
singularities theorem. For almost every � 2 S , the admissible limit of every gk;ƒ exists. Let � be
one such point. Choose � 2 S such that F.�/ D �. As r % 1, by Lemma 4.11, F.r�/ tends to �
within some region �˛.�/, so that

lim
r%1

gk;ƒ.F.r�// D gk;ƒ.�/;

exists for all k and all ƒ. Since r� D pi.F.r�// for some i , (4.2) shows that

Qƒ.ƒr�; F.r�// D 0;

and by (4.3), we get

.rƒ�/m C

m�1X
kD0

gk;ƒ.F.r�//.rƒ�/
k
D 0:

Letting, r % 1, we see that ƒ� is a root of the polynomial of degree m; Qƒ.�; �/. If #.�/ > m,
then we can choose ƒ 2 ˆ, which separate the m C 1 pre-images, which implies that Qƒ.�; �/

would have mC 1 roots, which is a contradiction.
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Step 3. We set things up for an application of Theorem 4.8. Let � 2 S , such that F �1.�/ D
f�1; : : : ; �mg. Choose r > 0, such that j�i � �j j > 3r; i ¤ j . Let ˇi be the set of points in z 2 B
with jz � �i j < r . F.B \ @ˇi/ does not contain � for 1 � i � m. Therefore, there exists ı > 0

such that set
V D fw 2 B W jw � �j < ıg;

does not intersect any of the sets F.B \ @ˇi/. Since F is an open mapping, each F.ˇi/ is an open
subset of B, which contains no boundary point of F.ˇi/. Clearly, F.ˇi/ intersects V and hence by
a connectedness argument, we get that V � F.ˇi/. Set

�i D ˇi \ F
�1.V / .1 � i � m/:

Then F.�i/ D V . The sets ˇi are pairwise disjoint and no point of B has more thanm pre-images.
Therefore, F is injective on each �i and hence by Osgood’s theorem, F is a biholomorphic map
of �i onto V . We have to check that there is an " > 0 such that �i contains all z 2 B with
jz � �i j < ". If this were false, there would be a sequence fzkg in ˇi n�i , converging to �i . Since
F is continuous on B, and f .�i/ D �, we have F.zk/ 2 V , for large k. Therefore, for large
k; zk 2 �i . By Theorem 4.8, F 2 Aut.B/.

�
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