MA5460 - Assignment 1
 Due Date - March 15, 2019

Jaikrishnan Janardhanan
Indian Institute of Technology Madras
jaikrishnan@iitm.ac.in
https://bit.ly/jkiitm

1. Let n be the last two digits of your roll number. Verify the series Fourier expansion of the entry numbered $n \bmod 20$ in Table 1 of the textbook.
2. Recall that D_{n} was the n-th Dirchlet kernel. Define

$$
K_{n}:=\frac{\left(D_{0}+\cdots+D_{n}\right)}{n},
$$

the Fejer kernel. Compute $K_{n} * f$.
3. Show that

$$
K_{n}(x)=\frac{1}{2 \pi n} \frac{\sin ^{2} n x / 2}{\sin ^{2} x / 2} .
$$

4. Solve Problems 5 and 6 on Page 43 of the textbook.
5. Solve Problem 12 on Page 48 of the textbook.
6. Solve problems 7 and 8 on Page 213 and use these to prove Theorem 2.7.
7. Compute the Fourier transform of $f(x)=\frac{1}{x^{2}+a^{2}}, a>0$ using the Calculus and residues and by using the inversion formula.
8. Show that the convergence of the Fourier series of f at a point x depends only on the behaviour of f near x, i.e., if $f(t)=g(t)$ for all t in some open interval containing x then the Fourier series of g converges to $g(x)$ at x if and only if the Fourier series of f converges to $f(x)$ at x.
9. (The Schwartz Space) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. We say f is rapidly decreasing at infinity if for each integer $m>0$, the function $|x|^{m} f(x) \rightarrow 0$ as $x \rightarrow \infty$. Let S denote the collection of all infintely differentiable function all of whose derivatives are rapidly decreasing at infinity.
a) Give several examples of functions in S.
b) Show that S is an algebra over \mathbb{R} with multiplication given by the usual product of functions.
c) Show that the Fourier transform is well-defined on S and that $\hat{f} \in S$.
d) Show that S is an algebra under the operation $*$.
e) Let $f \in S$ and let $g=f+\hat{f}+\hat{\hat{f}}+\hat{\hat{f}}$.
10. Show that

$$
\int_{0}^{\infty} \frac{\sin r x}{x} d x=\int_{-\infty}^{0} \frac{\sin r x}{x} d x=\frac{\pi}{2}
$$

