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 A Differential Forms Perspective
 on the Lax Proof of the

 Change of Variables Formula

 Nikolai V. Ivanov

 1. INTRODUCTION. In a beautiful paper [10], Peter Lax presented an elementary
 proof of a special case of the change of variables theorem. As explained in [10],

 this special case is sufficient to give a very simple proof of the Brouwer fixed-point
 theorem. In [11], Lax explained how one can deduce the general case of the change
 of variables theorem from this special case using some standard tools (e.g., partitions
 of unity) from the no-man's-land between advanced calculus and the three great "dif-
 ferential" theories (differential topology, differential geometry, ordinary differential
 equations), to paraphrase Serge Lang (see the foreword of [8]).

 The first goal of this article is to present a differential forms version of the Lax proof
 of (the special case of) the change of variables formula. We have attempted to follow
 the Lax arguments as closely as possible. Special care was taken to be completely
 explicit about all results concerned with the integration of differential forms, since
 the usual expositions assume (or prove in a classical way) the change of variables
 formula at the very beginning of integration theory for differential forms. One of the
 exceptions is Lang's book [9], where differential aspects of the theory of differential
 forms are clearly separated from the integration (because derivatives make sense in
 infinite dimensions, and among the Lang's objectives is to work in infinite dimensions
 whenever possible; see [9, chap. 5, sec. 3]).

 Our second goal is to present a fairly detailed comparison of our proof with Lax's.
 Such a comparison is very instructive, for it sheds light on both the efficiency of the
 differential form theory and the brilliance with which Lax uses classical analysis. To
 the extent possible, we retain Lax's notation and terminology.

 A key role in the Lax proof is played by a fairly mysterious determinantal identity,
 which surfaces here as (3). It is almost invisible in the differential forms version of the
 proof. In fact, identity (3) plays a similar role in at least one other proof of the change
 of variables formula (namely, in the proof by Leinfelder and Simader [12]), and it is
 ubiquitous in analytical approaches to the Brouwer fixed-point theorem and related
 topics. With the exception of a 1910 paper of J. Hadamard [4], the original context
 in which this identity arose is never mentioned. In fact, identity (3) goes back to the
 Jacobi theory of multipliers for systems of ordinary differential equations [6]. This
 theory generalizes the well-known theory of integrating factors (due to Euler). While
 included in such classical treatises of analysis as [2] and [7], this theory apparently fell
 out favor sometime in the twentieth century.

 In this paper we need only a small fragment of the theory of differential forms.
 All that is needed can be found, for example, in chapter 2 of Warner's textbook [16].
 One might also suggest the much more elementary textbook by Edwards [1]. Other
 textbooks include Guillemin and Pollack [3] and Lang [9] (the last one is more abstract
 and advanced than the others, partially because it deals with the not-necessarily-finite
 dimensional situation from the outset). I would like also to recommend to the reader
 the nice article by H. Samelson in this MONTHLY [13] that summarizes both the theory
 of differential forms and its history (which contains some surprises).
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 A version of the Lax proof similar to ours was suggested by Michael Taylor [15].
 He also uses differential forms, but his proof differs from Lax's in other respects as
 well. In contrast with the present article, Taylor aims at more general versions of the
 change of variables theorem, versions that assume less regularity on the part of the
 change of variables mapping. Our version is equally amenable to generalization, but
 the goals of this paper are purely expository.

 2. THE LAX SET-UP. The special case of the change of variables formula consid-
 ered by [10] deals with the following situation. Let y = p(x) be a mapping of n-
 dimensional x-space into n-dimensional y-space (i.e., let p : Rn -+ Rn). We make the
 following two assumptions:

 (i) (p is a C'-mapping (i.e., qp has continuous first-order partial derivatives every-
 where in Rn);

 (ii) q is the identity outside some sphere, say the unit sphere (i.e., 9(x) = x when

 Ixl > 1).

 Now we are ready to state the change of the variables theorem in the Lax formulation.

 Theorem 1 (Change of Variables). Let f : R"n R" be a continuous function of
 compact support. Then

 f f(p(x))J(x)dx = f(y)dy,

 where J denotes the Jacobian determinant of the mapping (p (i.e.,

 J(x) = det (x) ,

 in which qpj is the jth component of p.)

 We start our proof with a simple lemma.

 Lemma 1. If g : Rn R is a C1-function and f = (ti,..., /n) : Rn - Rn is a
 C1-mapping, then

 d(g o 4r) A dl Adf A Adn d = (-1)i-1 oig d^iA. ^ ,
 8yi

 for i = 1, 2, ... , n, where the symbol ^ signifies an omitted term.

 Proof Note that, by the chain rule,

 d(g o /) = d(l*(g)) = 1I*(dg)

 = * 1-yjdyj

 (Here *() signifies the pull-back under [16],[3]) dHence

 (Here #*(-) signifies the pull-back under ¢ [16],[3].) Hence
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 d(g o /r) A dl r\A . . .diri A . . . A dir,

 do A AA ^-ddi \. Ad ^
 -= (-1) 1 ,) dr A...A^d

 because df1j A (d4i A ... d i A ... A d n) = 0 when j : i. The lemma follows.
 (Note that the sign (-1)i-1 arises from the need to move dfri from the first position to
 the ith.) 1

 Corollary 1. If h : R" - R is a C1-function, then

 d(h dx A...A dxi . A dxn) = dh A dxl A * A dxi . .. A dx,

 (hi

 = (-1)i1'h dxl A dx2 A • • • A dxn
 8xi

 fori = 1,2,..., n.

 Proof The first equality is simply the definition of the exterior derivative. In order to
 prove the second one, just apply the Lemma 1 with g = h and t : R" -+ R" equal to
 the identity map. *

 We will need the following special case of Stokes's theorem. Let c > 0, and let I =

 Ic be the standard c-cube in n-dimensional x-space (i.e., I is given by the inequalities
 |xi < cfori = 1,2,..., n).

 Theorem 2 (Stokes's Theorem). Let w be a smooth (n - 1)-form on R", say

 n

 w= hidxl A ... A di A ... A dxn,
 i=1

 in which the hi are C' -functions. Then

 fdo =f ,

 where I signifies the boundary of I.

 The integrals here can be understood in a naive sense, without any recourse to the
 general theory of integration of differential forms. First of all, dw is an n-form on R",
 and the integral fi jr of an n-form p = g dx1 A ... A dxn can be defined simply as
 the usual volume integral fi g. In order to avoid any discussion of the orientation of I

 or of the induced orientation of 8 I, we interpret the integral f, w simply as shorthand
 for

 i=1
 where li and Ii- are the faces of the cube I given by the equations xi = c and xi = -c,
 respectively. Note that the integral defined in such a way is clearly linear with respect

 A DIFFERENTIAL FORMS PERSPECTIVE November 2005]  801

This content downloaded from 203.199.213.194 on Fri, 04 Nov 2016 08:44:31 UTC
All use subject to http://about.jstor.org/terms



 to the addition of differential forms, since each of terms involved is a standard (n - 1)-
 dimensional integral.

 The possibility of restricting ourselves to such an elementary and limited version
 of the Stokes theorem is a great advantage of the Lax approach. After this simple case
 is used to prove Theorem 1 and the change of variables formula is extended to the
 general case [11], one can return to the theory of integration of differential forms in its
 full generality (where the strengthened version of the change of variables formula is
 needed) and easily prove the Stokes theorem in complete generality (say, for manifolds
 with boundary instead of I, if one already has the notion of a manifold at hand).

 Proof of Theorem 2. It is sufficient to deal with the different summands of co sepa-
 rately. Let wi = hi dxi A . . A dx*/\ ... A dxn. By Corollary 1,

 doi = (-1)i-1 i dxl ^ dx2 A * A dxn.
 axi

 Hence,

 fd (-1)i-1 hi -11 a( dxh dxi ...d

 = (-l)i1 hdx. .dx.. .dxn - hi dxl ...dxi...dxn)

 =(-l)i-1 f hi - l hi= oi.

 The last step uses our definition of the integral fai. Earlier in the computation we used
 the Fubini theorem (twice) and the fundamental theorem of calculus. (Of course, the
 Stokes theorem is simply the multidimensional form of the fundamental theorem of
 calculus.) This proves the theorem. U

 Remark. The foregoing proof is very close to the one found in [9, chap. 17, sec. 1].

 Now we are ready for the proof of the change of variables formula.

 Proof of Theorem 1. It is sufficient to prove the theorem for C'-functions f and for
 C2-mappings (p, since functions and mappings can be approximated in the relevant
 norms by C'-functions and C2-mappings, respectively (see [10]). Following Lax, we
 define g : R" -4 R by

 g(yl, y2, ..., n) = (zY2, ...*, Yn) dz.

 The integral is well defined because f has compact support and is of class C'. Clearly,

 ag/ayl = f. The function g is of class C'. Fix c > 0 and let I = [-c, c]n. We can
 choose c to be so large that both the support of f and the unit ball B = {y : I yl I 1}
 are contained in I. Then g(yl,..., yn) = 0 when I yjI > c for any j # 1 and when
 yl < -c. In addition, since y9 agrees with the identity outside of B, f(p(x)) vanishes
 outside I. It follows that we can restrict the integration in the theorem to I.
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 First, notice that

 dl A...Adn =- dx A...- A dxj
 j=l xj j=1 xj

 = (det xj) dxl A * * A dxn = J dxl A ... A dxn

 in view of the basic relation between determinants and top-dimensional exterior prod-
 ucts and the definition of the Jacobian determinant. Therefore, the integrand in the

 left-hand side of the change of variables formula computes as

 f (p(x))J(x) dX1 A * * . A dxn = f (p(x)) dpl A* A A dpn

 -- op (x) dp A ... A dp,.
 \ay

 By Lemma 1 (applied to the case i = 1), the last expression is equal to

 d(g o po) A dp2 A A dSOn.

 Now, obviously,

 d(g o p) A d9p2 A . . A dO,, = d(g o (p dip2 A . . A dpn). (1)

 (Here we have implicitly invoked our assumption that qp is a C2-mapping.)

 Next, we conclude by integrating that

 f ((x)) J(x) dx ^ A dxn = d(g o dp2 A . . A dn).

 By Stokes's theorem the last expression is equal to

 J gopdcp2 A d*** dpn.
 JI

 Notice that the boundary a I is entirely contained in the domain where qp coincides
 with the identity mapping. Hence the last integral becomes

 Sgdy2 A A dy, = g dy2...dyn

 =1 f dyidy2 ...dyn

 = f dy dy2 ..dyn

 = f idy2 ...dyn = ff(y) dy.

 In the first equality we have exploited the fact that g vanishes on all faces of I with the
 exception of I+. This completes the proof of Theorem 1. U
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 3. COMPARISON WITH THE LAX PROOF. In this section we compare our

 proof with Lax's. The reader might want to have the MONTHLY issue with the Lax
 article [10] at hand, in order to appreciate this discussion fully. At the same time,
 most of it can be understood independently of [10]. First of all, our proof is based on
 the same key idea, namely, introducing the function g. We also use the same tool of
 restricting integration to a large cube I. Lemma 1 in the special case i = 1 is the ob-
 servation of Lax (see [10, p. 489]) expressed in the language of differential forms, with
 his yo corresponding to our 4. Note that the standing assumption on yp in [10] (the same
 as our assumptions on 0p) plays no role in this observation (except for the differentia-
 bility). We proved Lemma 1 for all i because this is no more difficult than the case
 i = 1, and it provided us with Corollary 1, which turned out to be a key ingredient in
 our proof of Stokes's theorem.

 One may observe that Lax does not uses the Stokes theorem, at least not explic-
 itly. Instead he uses integration by parts, which is not used in our proof in an explicit

 manner, and a determinantal identity (formula (2.10) on page 499 in [10]).
 Recall that in the calculus of one variable integration by parts is nothing other than a

 combination of the Leibniz rule for differentiating a product with the fundamental the-
 orem of calculus. The Leibniz rule naturally generalizes to the calculus of differential
 forms, where it evolves into the following formula:

 d(w1 A w02) = dw1 A 02 + (--1)aW1 A d(02,

 in which a is the degree of the form a1. The multivariate analogue of the fundamental
 theorem of calculus is the Stokes theorem, as we have already pointed out. The differ-
 ential form version of integration by parts in the case of integration over I (the only
 case we need) is the following computation:

 fdw( A 2 + (-l)a01 A dw2 = fd(wl A 02) = f w 1A 02

 Now, it might appear that we have not used the Leibniz formula either. In fact, it is
 hidden in formula (1). To be more precise, we can deduce (1) as follows. Observe that

 d(g o (p dpo2 A . A dqon) = d(g o (p) A dp2 A . A d On + g o 2p d(dp2 A . A d(pn)

 by the Leibniz formula with wo equal to the 0-form g o o and w2 equal to the form

 do2 A ... A d(p. The second summand vanishes because

 d(d(p2 A - A dpn) = 0, (2)

 so (1) follows. From the point of view of differential forms, (2) is obvious. A formal
 proof follows from the Leibniz rule for an (n - 1)-fold product of forms and the fact
 that d(dpi) = 0 (here we need pi to be of class C2). A more geometric proof is pre-
 sented in [5] (see the proof of the lemma therein). Expressed in classical language,
 formula (2) turns into a not quite trivial and fairly mysterious determinantal identity.
 Any (n - 1)-form dq2 A ... A dqpn can be written as

 d2 A . A dOn = £ Ai dxl A . A d A d x * A dx,
 i=1

 for suitable functions Ai. (This formula corresponds to expanding the determi-
 nant (2.5) in the Lax proof along its first column.) Then
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 i=
 (by Corollary 1 applied to functions Ai in the role of h). As we saw, the left-hand side
 of this equation is 0, and this implies the identity

 (-1)i-1 = 0. (3)
 i=1 1Xi

 The Ai are, in fact, determinants of certain matrices of partial derivatives of p. More
 precisely, Ai is ith minor (of size (n - 1) x (n - 1)) of the (n - 1) x n matrix

 (a8pi/axj), where 2 < i < n and 1 < j < n, as the reader can easily check. This
 means that (-1)i-1Ai is nothing but the cofactor Mi that appears in Lax's paper, and
 our identity is equivalent to his determinantal identity (2.10):

 ax, MI + + ... Mn - 0.

 To sum up, formula (1) hides within it a special case of the Leibniz rule and the
 determinantal identity (3). Integrating this formula and applying the Stokes theorem
 to the result amounts to combining integration by parts with the Lax determinantal
 identity (2.10).

 The remainder of each proof-namely, the computation of

 Sg dy2 A A dyn
 JI

 in our proof and the computation of the boundary term in the integration by parts
 formula in the Lax proof [10]-are exactly the same.
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 Phyllis explained to him, trying to give of her deeper self, "Don't you find it
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 one before it, the theorems and functions, one thing making the next inevitable.
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 so moving.... "
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