MA5371 – Assignment 4 Oct 13, 2016

- 1. Which of the following subsets of \mathbb{R} have (length) volume zero.
 - a) $\mathbb{Q} \cap [0, 1]$.
 - b) $\mathbb{Q}^c \cap [0,1]$
 - c) The Cantor set.
- 2. Let $X \subset \mathbb{R}^n$ be a bounded subset which is contained in a proper vector subspace of \mathbb{R}^n . Prove that X has volume zero.
- 3. Let $X \subset \mathbb{R}^n$ be a set of volume zero and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Prove that T(X) has volume zero.
- 4. Let $\Omega \subset \mathbb{R}^n$ be a connected region and let $f : \Omega \to \mathbb{R}$ be a continuous function. Prove that there is a point $c \in \Omega$ such that

$$\int_\Omega f = f(c) \mathrm{vol}(\Omega)$$

- 5. Find the volume of the region in \mathbb{R}^3 bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
- 6. Use Fubini's theorem to show that the mixed partial derivatives of C^2 -smooth function are equal.
- 7. (Symmetry principle) Let $R \subset \mathbb{R}^n$ be a rectangle that is symmetric about the $x_1 = 0$ hyperplane, i.e., $(x_1, \ldots, x_n) \in R \implies (-x_1, x_2, \ldots, x_n) \in R$. Suppose $f : R \to \mathbb{R}$ is an integrable function with the property that $f(x_1, \ldots, x_n) = f(-x_1, x_2, \ldots, x_n)$. Compute $\int_R f$. What if R were symmetric about the origin and f is an odd function? What about more general regions?
- 8. Let $B \subset \mathbb{R}^3$ be the open unit-ball. Evaluate

$$\int_B x^2.$$

- 9. Find the volume of the cone of radius r and height h using cylindrical coordinates and spherical coordinates.
- 10. Use the change of variables theorem to justify the use of polar, cylindrical and spherical coordinates.

Note: Check the hypotheses of the change of variables theorem very carefully!