MA5371 - Assignment 4

Oct 13, 2016

1. Which of the following subsets of \mathbb{R} have (length) volume zero.
a) $\mathbb{Q} \cap[0,1]$.
b) $\mathbb{Q}^{c} \cap[0,1]$
c) The Cantor set.
2. Let $X \subset \mathbb{R}^{n}$ be a bounded subset which is contained in a proper vector subspace of \mathbb{R}^{n}. Prove that X has volume zero.
3. Let $X \subset \mathbb{R}^{n}$ be a set of volume zero and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear map. Prove that $T(X)$ has volume zero.
4. Let $\Omega \subset \mathbb{R}^{n}$ be a connected region and let $f: \Omega \rightarrow \mathbb{R}$ be a continuous function. Prove that there is a point $c \in \Omega$ such that

$$
\int_{\Omega} f=f(c) \operatorname{vol}(\Omega) .
$$

5. Find the volume of the region in \mathbb{R}^{3} bounded by the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.
6. Use Fubini's theorem to show that the mixed partial derivatives of \mathcal{C}^{2}-smooth function are equal.
7. (Symmetry principle) Let $R \subset \mathbb{R}^{n}$ be a rectangle that is symmetric about the $x_{1}=0$ hyperplane, i.e., $\left(x_{1}, \ldots, x_{n}\right) \in R \Longrightarrow\left(-x_{1}, x_{2}, \ldots, x_{n}\right) \in R$. Suppose $f: R \rightarrow \mathbb{R}$ is an integrable function with the property that $f\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(-x_{1}, x_{2}, \ldots, x_{n}\right)$. Compute $\int_{R} f$. What if R were symmetric about the origin and f is an odd function? What about more general regions?
8. Let $B \subset \mathbb{R}^{3}$ be the open unit-ball. Evaluate

$$
\int_{B} x^{2} .
$$

9. Find the volume of the cone of radius r and height h using cylindrical coordinates and spherical coordinates.
10. Use the change of variables theorem to justify the use of polar, cylindrical and spherical coordinates.
Note: Check the hypotheses of the change of variables theorem very carefully!
