MA5371 - Assignment 3
 Sep 23, 2016

1. Which of the following subsets of \mathbb{R}^{2} are 1-dimensional manifolds?
a) The union of the x-axis and y-axis.
b) The set $\{(x, y): y=|x|\}$.
c) The set $\{(x, y): y \in \mathbb{Q}\}$.
d) The figure ' 8 ' which is the union of the circle of radius 1 centred at $(0,1)$ and the circle of radius 1 centred at $(0,-1)$.
2. Show that the following sets are manifolds by showing that they satisfy all of the three equivalent definitions of a manifold:
a) $\left\{\left(t, t^{2}, t^{4}\right): t \in \mathbb{R}\right\}$.
b) the zero set of the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $f(x, y, z)=\left(x^{2}+y^{2}-1, x^{2}+\right.$ $\left.y^{2}+z^{2}-2 x\right)$.
c) the zero set of the function $x^{2}+y^{2}-z^{2}$ defined on $\mathbb{R}^{3} \backslash\{0\}$
3. (Torus in $\left.\mathbb{R}^{3}\right)$. Consider the circle in the $x z$-plane centred at the point $(R, 0,0)$ of radius $r, r<R / 2$. Now rotate this circle about the z-axis. What we get is a donut-type object. Prove that this object is a 2 -dimensional manifold.

Hint: Use polar coordinates to parametrize the circle and then think about how you can parametrize the torus which is obtained by rotating this circle.

