MA5371 - Assignment 2Aug 26 , 2016

Throughout this assignment, unless otherwise specified, $U \subset \mathbb{R}^n$ will be an open set, $a \in U$ and $f: U \to \mathbb{R}^m$ will be a function.

- 1. Let $X \subset \mathbb{R}^n$ be a non-compact set. Construct a function $f : X \to \mathbb{R}$ that is unbounded.
- 2. Let $a_1, \ldots, a_k \in \mathbb{R}^n$ be a fixed set of points. Show that the function

$$f(x) = \sum_{i=1}^{k} \|x - a_i\|^2$$

has a global minimum and find the minimum point.

- 3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be harmonic (i.e, f is \mathcal{C}^2 -smooth and $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$). Assume $\frac{\partial^2 f}{\partial x^2}(a) \neq 0$. Prove that a cannot be an extremum of f.
- 4. Classify the critical points of the function $x^3 + e^{3y} 3xe^y$.
- 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be \mathcal{C}^1 -smooth. Prove that f cannot be injective.
- 6. Given an example to show that the continuity of the partial derivatives is an essential hypothesis in the statement of the inverse function theorem.
- 7. Use the implicit function theorem to give a proof of the inverse function theorem.
- 8. Find the maximum and minimum of the function $x_1 + \cdots + x_n$ defined on \mathbb{R}^n subject to the constraint ||x|| = 1.
- 9. Suppose p, q > 0 and 1/p + 1/q = 1 and x, y > 0. Use Lagrange multipliers to prove that

$$\frac{x^p}{p} + \frac{y^q}{q} \ge xy.$$

- 10. Let $\mathcal{M}_{n \times n}$ denote the collection of all linear transformations from \mathbb{R}^n to itself (you may think of them as square matrices, if you wish). Let $\|\cdot\|$ denote the operator norm (sup norm). Prove that:
 - a) If $S, T \in \mathcal{M}_{n \times n}$, then

$$||S + T|| \le ||S|| + ||T||$$

Thus, we can a define a metric on $\mathcal{M}_{n \times n}$ by d(S,T) := ||S - T||.

b) Let $f: U \to \mathbb{R}^n$ be \mathcal{C}^1 -smooth. Prove that the map $\Lambda: U \to \mathcal{M}_{n \times n}$ given by $x \mapsto Df(x)$ is a continuous mapping.

- c) Let $GL_n(\mathbb{R})$ denote the subspace of invertible $n \times n$ matrices. Prove that the map $A \mapsto A^{-1}$ from $GL_n(\mathbb{R})$ to itself is a continuous mapping.
- d) Let $A \in \mathcal{M}_{n \times n}$ satisfy $||A I|| \le 1/2$. Prove that A is invertible.
- 11. Let $P : \mathbb{R}^n \to \mathbb{R}$ be a polynomial of degree k. Let $a \in \mathbb{R}^n$. What is the Taylor polynomial of P of degree k at the point a?
- 12. Is every \mathcal{C}^{∞} -smooth function automatically real-analytic?