MA5371 - Assignment 1

Aug 5 , 2016

Throughout this assignment, unless otherwise specified, $U \subset \mathbb{R}^{n}$ will be an open set, $a \in U$ and $f: U \rightarrow \mathbb{R}^{m}$ will be a function.

1. Let f be differentiable at a. Prove that the derivative $D f(a)$ is unique.
2. If $f=\left(f_{1}, \ldots, f_{m}\right)$, show that f is differentiable at a iff each f_{i} is differentiable at a.
3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear map. Show that for all $0 \neq v \in \mathbb{R}^{n}, a \in \mathbb{R}^{n}, D_{v} T(a)$ exists and calculate it. Is T differentiable? If so, what is its derivative?
4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function such that $\|f\| \leq\|x\|$. Show that f is differentiable at 0 .
5. Let $U \subset \mathbb{R}^{2}$ be an open set $f: U \rightarrow \mathbb{R}$. We say that f is independent of the second variable if for each $\left(x_{0}, y_{0}\right) \in U$, the one variable function $f\left(x_{0}, y\right)$ defined on the set $\left(\left\{x_{0}\right\} \times \mathbb{R}\right) \cap U$ is constant.
a) Show that if f is independent of the second variable, then $\frac{\partial f}{\partial y} \equiv 0$ on U.
b) Let $U:=\left\{(x, y) \in \mathbb{R}^{2}: x<0\right.$, or $x \geq 0$ and $\left.y \neq 0\right\}$ and suppose $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y} \equiv 0$ on U. Show that f must be constant.
c) Construct an open set $U \subset \mathbb{R}^{2}$ and a function $f: U \rightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial y} \equiv 0$ on U but yet f is not independent of the second variable.
6. Let $U \subset \mathbb{R}^{n}$ be open and convex (i.e., $\left.\forall x, y \in U, t x+(1-t) y \in U, t \in[0,1]\right)$ and suppose $D f \equiv 0$ on U. Prove that f is constant.
7. Let $g:(a, b) \rightarrow \mathbb{R}^{n}$ be a twice-differentiable parametrized curve. Prove that g has constant speed iff the velocity and acceleration vectors are orthogonal for each $t \in(a, b)$.
8. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(0)=0$ and $f(x, y)=x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$ when $(x, y) \neq 0$. Show that the mixed partial derivatives of f are not equal at 0 . Why does this happen?
9. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $\exp \left(-x^{-2}\right)$ when $x \neq 0$ and $f(0)=0$. Show that $f \in \mathcal{C}^{\infty}(\mathbb{R})$. Compute all the derivatives of f at 0 .
Hint: Use L'Hospital's rule and induction.
10. Let $f: \mathbb{R}^{m} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a bilinear function (refer to Wikipedia if you do not know the definition). Prove that
a) $\lim _{(h, k) \rightarrow 0} \frac{\|f(h, k)\|}{\|x\|}=0$.
b) $D f(a, b)(x, y)=f(a, y)+f(x, b)$.
