MA5371 - Assignment 1Aug 5 , 2016

Throughout this assignment, unless otherwise specified, $U \subset \mathbb{R}^n$ will be an open set, $a \in U$ and $f: U \to \mathbb{R}^m$ will be a function.

- 1. Let f be differentiable at a. Prove that the derivative Df(a) is unique.
- 2. If $f = (f_1, \ldots, f_m)$, show that f is differentiable at a iff each f_i is differentiable at a.
- 3. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Show that for all $0 \neq v \in \mathbb{R}^n, a \in \mathbb{R}^n, D_v T(a)$ exists and calculate it. Is T differentiable? If so, what is its derivative?
- 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function such that $||f|| \le ||x||$. Show that f is differentiable at 0.
- 5. Let $U \subset \mathbb{R}^2$ be an open set $f: U \to \mathbb{R}$. We say that f is independent of the second variable if for each $(x_0, y_0) \in U$, the one variable function $f(x_0, y)$ defined on the set $(\{x_0\} \times \mathbb{R}) \cap U$ is constant.
 - a) Show that if f is independent of the second variable, then $\frac{\partial f}{\partial y} \equiv 0$ on U.
 - b) Let $U := \{(x, y) \in \mathbb{R}^2 : x < 0, \text{ or } x \ge 0 \text{ and } y \ne 0\}$ and suppose $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \equiv 0$ on U. Show that f must be constant.
 - c) Construct an open set $U \subset \mathbb{R}^2$ and a function $f: U \to \mathbb{R}$ such that $\frac{\partial f}{\partial y} \equiv 0$ on U but yet f is **not** independent of the second variable.
- 6. Let $U \subset \mathbb{R}^n$ be open and convex (i.e., $\forall x, y \in U, tx + (1-t)y \in U, t \in [0,1]$) and suppose $Df \equiv 0$ on U. Prove that f is constant.
- 7. Let $g: (a, b) \to \mathbb{R}^n$ be a twice-differentiable parametrized curve. Prove that g has constant speed iff the velocity and acceleration vectors are orthogonal for each $t \in (a, b)$.
- 8. Define $f : \mathbb{R}^2 \to \mathbb{R}$ by f(0) = 0 and $f(x, y) = xy \frac{x^2 y^2}{x^2 + y^2}$ when $(x, y) \neq 0$. Show that the mixed partial derivatives of f are not equal at 0. Why does this happen?
- 9. Define f : R → R by exp(-x⁻²) when x ≠ 0 and f(0) = 0. Show that f ∈ C[∞](R). Compute all the derivatives of f at 0.
 Hint: Use L'Hospital's rule and induction.
- 10. Let $f : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^p$ be a bilinear function (refer to Wikipedia if you do not know the definition). Prove that

a)
$$\lim_{(h,k)\to 0} \frac{\|f(h,k)\|}{\|x\|} = 0.$$

b) Df(a,b)(x,y) = f(a,y) + f(x,b).