Solutions to MA5360 - Quiz 1

1. (5 Marks) Let $D \subset \mathbb{C}$ be a domain and let $f \in H(D)$. Suppose $\arg f(z)$ is a constant modulo $2 \pi \mathbb{Z}$. What can you say about f ?

The function f must b constant. The idea behind the proof is very simple. The image of the function f all lie on a single ray. We just rotate the ray to make it the real-axis. Fix $z_{0} \in D$ and note that the function $g(z):=e^{-i \arg f\left(z_{0}\right)} f(z)$ has the property that $\arg g(z)=0$ modulo $2 \pi \mathbb{Z}$. This means that g is a real-valued function and hence must be a constant function by a result proved in class. Hence, $f(z)$ is also a constant function.
2. (10 Marks) Let $\gamma_{n}:[0,1] \rightarrow \mathbb{C}$ be a sequence of continuous curves that converges uniformly to the curve $\gamma:[0,1] \rightarrow \mathbb{C}$. Let $z \in \mathbb{C} \backslash \gamma^{*}$. Show that $\operatorname{Ind}(\gamma, z)=$ $\operatorname{Ind}\left(\gamma_{n}, z\right)$ for n suitably large.
First of all, $\operatorname{Ind}\left(\gamma_{n}, z\right)$ is well-defined for large n. This is because $z \notin \gamma^{*}$ and hence $z \notin \gamma_{n}^{*}$ for n suitably large as $\gamma_{n} \rightarrow \gamma$ uniformly. Furthermore, $\left|\gamma_{n}(t)-\gamma(t)\right|<\varepsilon$ for n suitably large. Now the proof is exactly same as that for proving that the winding number is a continuous function.
3. (5 Marks) Using the Cauchy-Riemann equations, determine whether the following functions are entire:
a) $|z|^{2}$.
b) z^{2}.
c) e^{z}.

This is straightforward. First note that all the three functions above are \mathbb{R} differentiable. In fact, all these functions are \mathcal{C}^{∞}-smooth on the whole of \mathbb{C}. So the only thing to check is which of these functions satisfy the CR equations. The first one satisfies the CR equations only at 0 and is therefore not entire. The other two satisfy the CR equations on the whole of \mathbb{C} and are therefore entire.

