Outline of solution to assignment 1 question 6

Fill in the details of the steps given below to complete the proof. If someone submits a different (correct) proof, they get bonus points.

1. Without loss of generality, assume that U is connected. Let $\mathrm{g}: \mathrm{U} \rightarrow \mathbb{C}$ be a continuous branch of the square root function. Then we have

$$
\mathrm{g}(z)^{2}=z .
$$

Use this to show that $\mathrm{g} \in \mathrm{H}(\mathrm{U})$ and that $\mathrm{g}^{\prime}(z)=\frac{1}{2 \mathrm{~g}(z)}$. You might freely use the chain rule, product rule, etc. Your are just proving the familiar fact that $\frac{\partial \sqrt{x}}{\partial x}=\frac{1}{2 \sqrt{x}}$ so don't worry too much about being rigorous.
2. In this step, we will show that if $\gamma:[0,1] \rightarrow \mathrm{U}$ is any closed path then $\operatorname{Ind}(\gamma, 0)=0$. Suppose not, then

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathrm{d} z}{z}=\mathrm{k} \in \mathbb{Z}, \mathrm{k} \neq 0
$$

Note that $\mathrm{g}(\gamma(z))$ is also a closed path. Hence,

$$
\operatorname{Ind}(\mathrm{g}(\gamma), 0)=\frac{1}{2 \pi \mathrm{i}} \int_{\mathrm{g}(\gamma)} \frac{\mathrm{d} z}{z}=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \frac{\mathrm{~g}^{\prime}(\gamma(\mathrm{t})) \gamma^{\prime}(\mathrm{t})}{\mathrm{g}(\gamma(\mathrm{t}))} \mathrm{dt}=\frac{1}{2 \pi \mathrm{i}} \int_{0}^{1} \frac{\gamma^{\prime}(\mathrm{t})}{2 \gamma(\mathrm{t}) \mathrm{dt}}=\mathrm{k} / 2,
$$

which shows that the winding number of γ with respect to 0 is an even number. But any closed curve in the plane with non-zero winding number around the origin contains in its image a simple closed curve with winding number one around the origin, and this leads to a contradiction.
3. Fix $z_{0} \in \mathrm{U}$ and define $\mathrm{f}\left(z_{0}\right)$ to be some arbitrary value in $\arg z_{0}$. For any z in U , let $\gamma:[0,1] \rightarrow \mathrm{U}$ be a path from z_{0} to z and let ϕ be the branch of arg along γ that satisfies $\phi\left(z_{0}\right)=f\left(z_{0}\right)$. Set $f(z)=\phi(z)$. Prove that f is well-defined and that it is the required continuous branch of $\arg z$ on U.

