MA5360 – Assignment 4 Due Date – April 26, 2016

Jaikrishnan Janardhanan

jaikrishnan@iitm.ac.in

Indian Institute of Technology Madras https://bit.ly/ma5360

- 1. Let f be an entire function and suppose that $f(\mathbb{C})$ misses a disk. What can you say about f?
- 2. Let f be an entire function and suppose that for some $n \ge 0$

$$\lim_{n\to\infty}\frac{\mathsf{f}(z)}{z^n}$$

converges to a finite quantity. Prove that f is a polynomial.

- 3. Let $f: \mathbb{D} \to \mathbb{D}$ be holomorphic. Suppose that for some $z_0 \in \mathbb{D}$ we have $f(z_0) = z_0$ and $f'(z_0) = 1$. What can you say about f?
- 4. Let $f \in H(\mathbb{D}) \cap C^0(\overline{\mathbb{D}})$ and suppose that f vanishes on some arc on the unit circle. Show that $f \equiv 0$.
- 5. Let $f \in D'_{\epsilon}(a)$ be such that f takes only values in the upper-half plane. Determine the type of singularity of f at a.
- 6. Prove that the set of zeroes of a non-identically zero meromorphic function on a domain D is a discrete subset of D.
- 7. Use the argument principle to given an alternative proof of the local mapping theorem.
- 8. What type of singularity is the origin for the following functions:

a)
$$\frac{1}{\tan z} - \frac{1}{\sin z}$$

b) $\frac{\sin z}{z^4}$.
c) $\frac{1}{e^z - 1}$.

- 9. Let f be a rational function. Show that the sum of all the residues, included at infinity, is equal to 0.
- 10. Go through all the examples in the textbook in section 5.8.