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Till now we dealt with some of the properties of the
Riemann-Stieltjes integrals.

In this lesson, we make an attempt to exploit our knowledge
of derivatives to compute the integrals.

The results we prove can be seen as a useful tool that
provides us some of the nice properties that we seek.
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We start with the Mean-Value theorem for integrals, which
reads

Theorem

Suppose that f is continuous on I = [a, b], then there exists a

number s ∈ I such that

∫ b

a

f (x)dx = f (s)(b − a).
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Mean-Value Theorem.

Since f is continuous on [a, b], we have

m(b − a) ≤

∫ b

a

f (x)dx ≤ M(b − a)

where m = minI f (x) = f (x ′) and m = maxI f (x) = f (x ′′),
x ′, x ′′ ∈ I . Now,

γ =

∫ b

a
f (x)dx

b − a

is a real number such that f (x ′) = m ≤ γ ≤ M = f (x ′′). Then,
Intermediate mean value theorem implies that there exist an s ∈ I

such that

f (s) = γ =

∫ b

a
f (x)dx

b − a
and the result follows.
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The next two results, namely, the fundamental theorems we
prove are two of the most celeberated results.

They draw a clear and important connection between integral
and differential calculus.

The first one of the two allows us to define new functions in
terms of integrals.

This function is some times referred to as accumultation of f .
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Theorem

Suppose that f ∈ R on [a, b]. Then the function F given by

F (x) =

∫ x

a

f (t)dt

is uniformly continuous on [a, b]. If f is continuous on [a, b], then

F is differentiable in (a, b) and for each x ∈ (a, b), F ′(x) = f (x).

Dr.A.Kaushik: Lecture-4 Real Analysis M.Sc.-I (Mathematics) Directorate of Distance Education, K.U. Kurukshetra



Outline
Introduction and Objective

Riemann Integrals and Differentiation
Integration of Vector Valued Functions

References

Proof- Part a.

Let u, v ∈ [a, b]. Without loss of generality we may assume that
u < v . Then consider

|F (v) − F (u)| = |

∫ v

a

f (t)dt −

∫ u

a

f (t)dt|,

= |

∫ u

a

f (t)dt +

∫ v

u

f (t)dt −

∫ u

a

f (t)dt|,

= |

∫ v

u

f (t)dt|,

≤ M|v − u|,

∴ ∀u, v ∈ [a, b], |v − u| < δ =
ǫ

M
⇒ |F (v) − F (u)| < ǫ.

Hence, F is uniformly continuous on [a, b].
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Proof- Part b.

In order to prove the second part, suppose that f is continuous and
x ∈ (a, b). Then there exist a δ1 such that
{x + h : |h| < δ1} ⊂ (a, b). Now f being continuous it is integrable
on every sub-interval of [a, b]. From this it follows that each of

∫ x+h

a

f (t)dt,

∫ x

a

f (t)dt and

∫ x+h

x

f (t)dt

exists for |h| < δ1, and in that case

F (x + h) − F (x) =

∫ x+h

x

f (t)dt, for any h with |h| < δ1 .
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Proof- Part b Continues.

By the Mean Value theorem for integral, there exists ξh with
|x − ξh| < δ1 so that the following holds

∫ x+h

x

f (t)dt = hf (ξh).

Combining the last two equalities, we have

F (x + h) − F (x)

h
= f (ξh), where |x − ξh| < δ1.
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Proof- Part b Continues.

Further assume that ǫ > 0 is given. Since f is continuous at x ,
there exists a δ2 > 0 such that

|f (k) − f (x)| < ǫ whenever |k − x | < δ2.

Choose δ = min{δ1, δ2}. Then, for h < δ, we have

|
F (x + h) − F (x)

h
− f (x)| = |f (ξh) − f (x)| < ǫ.

Since ǫ > 0 was chosen arbitrarily. It follows that

F ′(x) = f (x).

Now x ∈ (a, b) was arbitrary, it follows that F is differentiable on
the open interval (a, b).
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Note that the statement of the first fundamental theorem of
calculus differs from the one that we used to study in
elementary calculus.

What is the difference?
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We now try to offer a slightly different proof for the second
fundamental theorem of calculus. The theorem reads

Theorem

Suppose that f ∈ R on [a, b], and there is a function F that is

differentiable on [a, b] with F ′ = f , then

∫ b

a

f (t)dt = F (b) − F (a)

.
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Proof.

Let ǫ > 0 is given. Since f ∈ R on [a, b] there exists a partition
P ∈ P[a, b] such that

U(P, f ) − L(P, f ) < ǫ, and

|
n

∑

j=1

f (tj)∆xj −

∫ b

a

fdx | < ǫ. (1)

By Mean Value theorem, for each j ∈ {1, 2, . . . n} there is a point
tj ∈ [xj−1, xj ] such that

F (xj) − F (xj−1)

xj − xj−1

= F ′(tj),

i.e., f (tj)∆xj = F (xj) − F (xj−1).
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Proof Continues.

i.e.,
n

∑

j=1

f (tj)∆xj =
n

∑

j=1

[F (xj) − F (xj−1)],

= F (b) − F (a).

Therefore from equation (1), we have

|F (b) − F (a) −

∫ b

a

fdx | < ǫ.

Since ǫ > 0 was arbitrary it follows that

F (b) − F (a) =

∫ b

a

fdx .
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We now establish an elementary result which is an immediate
consequence of the results we just proved.

Theorem

If F and G are differentiable functions on [a, b] and F ′ = f ∈ R
and G ′ = g ∈ R then

∫ b

a

F (x)g(x)dx = F (b)G (b) − F (a)G (a) −

∫ b

a

G (x)f (x)dx .
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Proof.

Put H(x)=F(x)G(x). Then differentiation of H leads to

H ′(x) = F ′(x)G (x) + F (x)G ′(x) = f (x)G (x) + F (x)g(x).

Now, F and G being differentiable are continuous. Therefore F

and G are Riemann integrable. Algebraic property of Riemann
integrable function gives that,

F .G , Fg + Gf ∈ R, and hence H ′(x) ∈ R.
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Proof Continues.

An application of Fundamental Theorem of integral calculus yields

∫ b

a

[F (x)g(x) + G (x)f (x)]dx = H(b) − H(a),

i.e.,

∫ b

a

F (x)g(x)dx +

∫ b

a

G (x)f (x)dx = F (b)G (b)− F (a)G (a),

i.e.,

∫ b

a

F (x)g(x)dx = F (b)G (b)− F (a)G (a)−

∫ b

a

G (x)f (x)dx .
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Definition

Let f1, f2, . . . , fn be real valued bounded functions defined on [a, b].
Given a vector valued function f = (f1, f2, . . . , fn) from [a, b] into
ℜn and a monotonically increasing function α that is defined on
[a, b]. Then f is Riemann Stieltjes integrable with respect to α on
[a, b], written f ∈ R(α), if and only if fj ∈ R(α), ∀j ∈ (1, 2, . . . , n).
In this case

∫ b

a

f(x)dα(x) =

(
∫ b

a

f1(x)dα(x),

∫ b

a

f2(x)dα(x), . . .

. . . ,

∫ b

a

fn(x)dα(x)

)

.
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Theorem

Suppose that the vector valued functions f and g are Riemann

Stieltjes integrable with respect to α on the interval [a, b] and k is

any real constant, then

1 f + g ∈ R(α) on [a, b] and

∫ b

a

(f + g)dα =

∫ b

a

fdα +

∫ b

a

gdα,

2 kf ∈ R(α) on [a, b] and

∫ b

a

kfdα = k

∫ b

a

fdα.
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Theorem

Suppose that f, g ∈ R(α) on [a, b] and

1 if the function f ∈ R(α) also on [b, c], then f is Riemann

Stieltjes integrable with respect to α on [a, b] ∪ [b, c] and

∫ c

a

f(x)α(x) =

∫ b

a

f(x)α(x) +

∫ c

b

f(x)α(x).

2 if k be any positive real constant, then f ∈ R(kα) and

∫ b

a

f(x)dα(kx) = k

∫ b

a

f(x)dα(x).
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Theorem

Suppose that α is a monotonically increasing function such that

α′ ∈ R on [a, b] and f is a vector valued bounded function that is

defined on [a, b] into ℜn. Then f ∈ R(α) if and only if fα′ ∈ R.

Furthermore,

∫ b

a

f(x)dα(x) =

∫ b

a

f(x)α′(x)dx .
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Theorem

Suppose that f = (f1, f2, . . . , fn) ∈ R on [a, b].

1 Then the vector valued function F given by

F(x) =

(
∫ x

a

f1(t)dt,

∫ x

a

f2(t)dt, . . . ,

∫ x

a

fn(t)dt,

)

; x ∈ [a, b]

is continuous on [a, b]. Furthermore if f is continuous on

[a, b], then F is differentiable in (a, b) and, for each x ∈ (a, b),

F′(x) = f(x) = (f1(x), f2(x), . . . , fn(x)).

2 If there exists a vector valued function G on [a, b] that is

differentiable there with G′ = f, then
∫ b

a
f(t)dt = G(b)−G(a).
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Thank You !
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