Riemann-Stieltjes Integrals - Integration and Differentiation

Dr. Aditya Kaushik

Directorate of Distance Education Kurukshetra University, Kurukshetra Haryana 136119 India

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

Introduction and Objective Riemann Integrals and Differentiation Integration of Vector Valued Functions References

- Introduction and Objective
- Riemann Integrals and Differentiation
- Integration of Vector Valued Functions
- References

イロン イヨン イヨン イヨン

- Till now we dealt with some of the properties of the Riemann-Stieltjes integrals.
- In this lesson, we make an attempt to exploit our knowledge of derivatives to compute the integrals.
- The results we prove can be seen as a useful tool that provides us some of the nice properties that we seek.

イロト イポト イヨト イヨト

We start with the Mean-Value theorem for integrals, which reads

Theorem

Suppose that f is continuous on I = [a, b], then there exists a number $s \in I$ such that

$$\int_a^b f(x)dx = f(s)(b-a).$$

・ロン ・回 と ・ヨン ・ヨン

Mean-Value Theorem.

Since f is continuous on [a, b], we have

$$m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$$

where $m = min_I f(x) = f(x')$ and $m = max_I f(x) = f(x'')$, $x', x'' \in I$. Now,

$$\gamma = \frac{\int_{a}^{b} f(x) dx}{b - a}$$

is a real number such that $f(x') = m \le \gamma \le M = f(x'')$. Then, Intermediate mean value theorem implies that there exist an $s \in I$ such that

$$f(s) = \gamma = \frac{\int_a^b f(x) dx}{b-a}$$
 and the result follows.

Dr.A.Kaushik: Lecture-4 Real Analysis M.Sc.-I (Mathematics) Directorate of Distance Education, K.U. Kurukshetra

- The next two results, namely, the fundamental theorems we prove are two of the most celeberated results.
- They draw a clear and important connection between integral and differential calculus.
- The first one of the two allows us to define new functions in terms of integrals.
- This function is some times referred to as accumultation of f.

イロト イポト イヨト イヨト

Theorem

Suppose that $f \in \mathcal{R}$ on [a, b]. Then the function F given by

$$F(x) = \int_{a}^{x} f(t) dt$$

is uniformly continuous on [a, b]. If f is continuous on [a, b], then F is differentiable in (a, b) and for each $x \in (a, b)$, F'(x) = f(x).

・ロン ・回 と ・ヨン ・ヨン

Proof- Part a.

Let $u, v \in [a, b]$. Without loss of generality we may assume that u < v. Then consider

$$\begin{aligned} |F(v) - F(u)| &= |\int_a^v f(t)dt - \int_a^u f(t)dt|, \\ &= |\int_a^u f(t)dt + \int_u^v f(t)dt - \int_a^u f(t)dt|, \\ &= |\int_u^v f(t)dt|, \\ &\leq M|v - u|, \end{aligned}$$

$$\therefore \forall u, v \in [a, b], |v - u| < \delta = \frac{\epsilon}{M} \Rightarrow |F(v) - F(u)| < \epsilon.$$

Hence, F is uniformly continuous on $[a, b]$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Proof- Part b.

In order to prove the second part, suppose that f is continuous and $x \in (a, b)$. Then there exist a δ_1 such that $\{x + h : |h| < \delta_1\} \subset (a, b)$. Now f being continuous it is integrable on every sub-interval of [a, b]. From this it follows that each of

$$\int_{a}^{x+h} f(t)dt$$
, $\int_{a}^{x} f(t)dt$ and $\int_{x}^{x+h} f(t)dt$

exists for $|h| < \delta_1$, and in that case

$$F(x+h)-F(x)=\int_x^{x+h}f(t)dt, \quad ext{ for any } h ext{ with } |h|<\delta_1 \;.$$

Proof- Part b Continues.

By the Mean Value theorem for integral, there exists ξ_h with $|x - \xi_h| < \delta_1$ so that the following holds

$$\int_{x}^{x+h} f(t)dt = hf(\xi_h).$$

Combining the last two equalities, we have

$$rac{F(x+h)-F(x)}{h}=f(\xi_h), \hspace{0.5cm} ext{where} \hspace{0.1cm} |x-\xi_h|<\delta_1.$$

(ロ) (同) (E) (E) (E)

Proof- Part b Continues.

Further assume that $\epsilon > 0$ is given. Since f is continuous at x, there exists a $\delta_2 > 0$ such that

$$|f(k) - f(x)| < \epsilon$$
 whenever $|k - x| < \delta_2$.

Choose $\delta = \min\{\delta_1, \delta_2\}$. Then, for $h < \delta$, we have

$$\frac{F(x+h)-F(x)}{h}-f(x)|=|f(\xi_h)-f(x)|<\epsilon.$$

Since $\epsilon > 0$ was chosen arbitrarily. It follows that

$$F'(x)=f(x).$$

Now $x \in (a, b)$ was arbitrary, it follows that F is differentiable on the open interval (a, b).

- Note that the statement of the first fundamental theorem of calculus differs from the one that we used to study in elementary calculus.
- What is the difference?

イロト イヨト イヨト イヨト

We now try to offer a slightly different proof for the second fundamental theorem of calculus. The theorem reads

Theorem

Suppose that $f \in \mathcal{R}$ on [a, b], and there is a function F that is differentiable on [a, b] with F' = f, then

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

イロト イポト イヨト イヨト

Proof.

Let $\epsilon > 0$ is given. Since $f \in \mathcal{R}$ on [a, b] there exists a partition $P \in \mathcal{P}[a, b]$ such that

$$U(P, f) - L(P, f) < \epsilon, \text{ and}$$
$$|\sum_{j=1}^{n} f(t_j) \Delta x_j - \int_{a}^{b} f dx| < \epsilon.$$
(1)

By Mean Value theorem, for each $j \in \{1, 2, ..., n\}$ there is a point $t_j \in [x_{j-1}, x_j]$ such that

$$\frac{F(x_j) - F(x_{j-1})}{x_j - x_{j-1}} = F'(t_j),$$

i.e., $f(t_j)\Delta x_j = F(x_j) - F(x_{j-1}).$

Proof Continues.

i.e.,
$$\sum_{j=1}^{n} f(t_j) \Delta x_j = \sum_{j=1}^{n} [F(x_j) - F(x_{j-1})],$$

= $F(b) - F(a).$

Therefore from equation (1), we have

$$|F(b)-F(a)-\int_a^b fdx|<\epsilon.$$

Since $\epsilon > 0$ was arbitrary it follows that

$$F(b)-F(a)=\int_a^b f dx.$$

We now establish an elementary result which is an immediate consequence of the results we just proved.

Theorem

If F and G are differentiable functions on [a,b] and $F'=f\in \mathcal{R}$ and $G'=g\in \mathcal{R}$ then

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b G(x)f(x)dx.$$

・ロン ・回と ・ヨン・

Proof.

Put H(x)=F(x)G(x). Then differentiation of H leads to

$$H'(x) = F'(x)G(x) + F(x)G'(x) = f(x)G(x) + F(x)g(x).$$

Now, F and G being differentiable are continuous. Therefore F and G are Riemann integrable. Algebraic property of Riemann integrable function gives that,

$$F.G, Fg + Gf \in \mathcal{R}$$
, and hence $H'(x) \in \mathcal{R}$.

(ロ) (同) (E) (E) (E)

Proof Continues.

An application of Fundamental Theorem of integral calculus yields

$$\int_{a}^{b} [F(x)g(x) + G(x)f(x)]dx = H(b) - H(a),$$

i.e.,
$$\int_{a}^{b} F(x)g(x)dx + \int_{a}^{b} G(x)f(x)dx = F(b)G(b) - F(a)G(a),$$

i.e.,
$$\int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} G(x)f(x)dx.$$

(ロ) (同) (E) (E) (E)

Definition

Let f_1, f_2, \ldots, f_n be real valued bounded functions defined on [a, b]. Given a vector valued function $\mathbf{f} = (f_1, f_2, \ldots, f_n)$ from [a, b] into \Re^n and a monotonically increasing function α that is defined on [a, b]. Then \mathbf{f} is Riemann Stieltjes integrable with respect to α on [a, b], written $\mathbf{f} \in \mathcal{R}(\alpha)$, if and only if $f_j \in \mathcal{R}(\alpha)$, $\forall j \in (1, 2, \ldots, n)$. In this case

$$\int_{a}^{b} \mathbf{f}(x) d\alpha(x) = \left(\int_{a}^{b} f_{1}(x) d\alpha(x), \int_{a}^{b} f_{2}(x) d\alpha(x), \dots \right)$$
$$\dots, \int_{a}^{b} f_{n}(x) d\alpha(x) \right).$$

イロン イ部ン イヨン イヨン 三日

Theorem

Suppose that the vector valued functions **f** and **g** are Riemann Stieltjes integrable with respect to α on the interval [a, b] and k is any real constant, then

1 $\mathbf{f} + \mathbf{g} \in \mathcal{R}(\alpha)$ on [a, b] and

$$\int_{a}^{b} (\mathbf{f} + \mathbf{g}) d\alpha = \int_{a}^{b} \mathbf{f} d\alpha + \int_{a}^{b} \mathbf{g} d\alpha$$

2 $k\mathbf{f} \in \mathcal{R}(\alpha)$ on [a, b] and

$$\int_a^b k \mathbf{f} d\alpha = k \int_a^b \mathbf{f} d\alpha.$$

イロン 不同と 不同と 不同と

Theorem

Suppose that $\mathbf{f}, \mathbf{g} \in \mathcal{R}(\alpha)$ on [a, b] and

1 if the function $\mathbf{f} \in \mathcal{R}(\alpha)$ also on [b, c], then \mathbf{f} is Riemann Stieltjes integrable with respect to α on $[a, b] \cup [b, c]$ and

$$\int_{a}^{c} \mathbf{f}(x)\alpha(x) = \int_{a}^{b} \mathbf{f}(x)\alpha(x) + \int_{b}^{c} \mathbf{f}(x)\alpha(x) dx$$

2 if k be any positive real constant, then $\mathbf{f} \in \mathcal{R}(k\alpha)$ and

$$\int_a^b \mathbf{f}(x) d\alpha(kx) = k \int_a^b \mathbf{f}(x) d\alpha(x).$$

イロン 不同と 不同と 不同と

Theorem

Suppose that α is a monotonically increasing function such that $\alpha' \in \mathcal{R}$ on [a, b] and **f** is a vector valued bounded function that is defined on [a, b] into \Re^n . Then $\mathbf{f} \in \mathcal{R}(\alpha)$ if and only if $\mathbf{f}\alpha' \in \mathcal{R}$. Furthermore,

$$\int_a^b \mathbf{f}(x) d\alpha(x) = \int_a^b \mathbf{f}(x) \alpha'(x) dx.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem

Suppose that $\mathbf{f} = (f_1, f_2, \dots, f_n) \in \mathcal{R}$ on [a, b].

1 Then the vector valued function F given by

$$\mathbf{F}(x) = \left(\int_a^x f_1(t)dt, \int_a^x f_2(t)dt, \dots, \int_a^x f_n(t)dt, \right); \ x \in [a, b]$$

is continuous on [a, b]. Furthermore if **f** is continuous on [a, b], then **F** is differentiable in (a, b) and, for each $x \in (a, b)$,

$$\mathbf{F}'(x) = \mathbf{f}(x) = (f_1(x), f_2(x), \dots, f_n(x)).$$

イロト イポト イヨト イヨト

2 If there exists a vector valued function **G** on [a, b] that is differentiable there with $\mathbf{G}' = \mathbf{f}$, then $\int_a^b \mathbf{f}(t)dt = \mathbf{G}(b) - \mathbf{G}(a)$.

- Walter Rudin : Principles of Mathematical Analysis, McGraw Hill Pulishers.
- T. Apostol, Mathematical Analysis, Narosa Publication.
- A. Kaushik, Lecture Notes, Directorate of Distance Education, Kurukshetra University, Kurukshetra.

イロト イポト イヨト イヨト

Thank You !

Dr.A.Kaushik: Lecture-4 Real Analysis M.Sc.-I (Mathematics) Directorate of Distance Education, K.U. Kurukshetra

< □ > < □ > < □ > < □ > < □ > < □ > ... □ :