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Till now, we are playing with the functions which are smooth
enough or continuous in precise sense. What if we are given with
the functions which are not continuous? The next theorem answers
this question and relates us to a class of discontinuous function
which are integrable in the sense of Riemann Stieltjes.
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Theorem

Suppose that f is bounded on [a, b], f has only finitely many points

of discontinuity in I = [a, b], and that the monotonically increasing

function α is continuous at each point of discontinuity of f. Then

f ∈ R(α).
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Proof.

Let ǫ > 0 be given. Suppose that f is bounded on [a, b] and
continuous on [a, b] − I where I = [a1, a2, . . . , ap] is the nonempty
finite set of points of discontinuity of f in [a, b]. Suppose further
that α is monotonically increasing function on [a, b] that is
continuous at each element of I. Because I is finite and α is
continuous at each aj ∈ I , we can find p pairwise disjoint intervals
[uj , vj ], j = 1, 2, . . . , p, such that

I ⊂

p⋃
j=1

[uj , vj ] ⊂ [a, b] and

p∑
j=1

(α(vj) − α(uj)) < ǫ∗.

Further place these intervals in such a way that each aj ∈ I
⋂

(a, b)
lies in the interior os some [uj , vj ].
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Proof Continues.

Remove the segment (uj , vj) from [a, b]. Then the remaining set

K = [a, b] −

p⋃
j=1

(uj , vj)

= [a, u1]
⋃

[v1, u2]
⋃

. . .
⋃

[vp, b]

is compact. Moreover f is uniformly continuous on K. Therefore,
corresponding to ǫ∗ there is a δ > 0 such that

|f (s) − s(t)| < ǫ∗ whenever |s − t| < δ, ∀s, t ∈ K .
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Proof Continues.

Now, form a partition P = {a = x0, x1, ......xn−1, xn = b} of [a, b]
in such a way that the following properties holds;

1 uj ∈ P, ∀j ∈ {1, 2, . . . p, }

2 vj ∈ P, ∀j ∈ {1, 2, . . . p, }

3 (uj , vj)
⋂

P = φ, ∀j ∈ {1, 2, . . . p, } and

4 xi−1 6= uj ⇒ ∆xi < δ, ∀i ∈ {1, 2, . . . n, } and ∀j ∈ {1, 2, . . . p.}
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Proof Continues.

It is easy to follow under the conditions establised that xi−1 = uj

implies xi = vj . Define M = supx |f (x)|, Mi = supx∈[xi−1,xi ]|f (x)|
and mi = infx∈[xi−1,xi ]|f (x)|. Then for each i,

0 ≤ Mi − mi = |Mi − mi | ≤ |Mi | + |mi | ≤ M + M = 2M.

Further as long as xi−1 6= uj , we have ∆xi = |xi − xi−1| < δ,

⇒ |f (xi ) − f (xi−1)| < ǫ∗, i .e.|Mi − mi | < ǫ∗.
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Proof Continues.

Consider,

U(P, f , α) − L(P, f , α) =
n∑

j=1

(Mj − mj)∆αj

≤ ǫ∗[α(b) − α(a)] + 2Mǫ∗

< ǫ

where ǫ∗ < ǫ

[α(b)−α(a)]+2M
. Because ǫ > 0 was chosen arbitrary

f ∈ R(α) follows from integrability criterion.
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It is important to note that in case f and α have common point of
discontinuity then it is not necessary that f is Riemann-Stieltjes
integrable.
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The following theorem provides us the sufficient condition for the
composition of a function with a Riemann-Stieltjes integrable
function to be Riemann-Stieltjes integrable.

Theorem

Suppose f ∈ R(α) on [a, b] such that m ≤ f ≤ M and φ a

continuous function defined on [m, M]. If

h = {φ(f (x)) : x ∈ [a, b]} then h ∈ R(α) on [a, b].
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The above theorem together in combination with fundamental
properties of Riemann-Stieltjes integrals, allows us to generate a
set of Riemann-Stieltjes integrable functions. This is the context of
next theorem.

Theorem

Let f be a bounded real valued function such that f ∈ R(α) on

[a, b], then f 2, |f | ∈ R(α) on [a, b].
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Proof.

Take φ1(t) = t2 and φ2(t) = |t|. Because both φ1(t) and φ2(t) is
continuous and f ∈ R(α) on [a, b]. Theorem 2 asserts that
φ1(f ) = f 2 ∈ R(α) and φ2(f ) = |f | ∈ R(α) on [a, b].
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This part offers a list of algebraic properties of Riemann-Stieltjes
integrals.

Theorem

Suppose that f , g ∈ R(α) on [a, b] and k be any constant, then

1 f + g ∈ R(α) on [a, b] and

∫ b

a

(f + g)dα =

∫ b

a

fdα +

∫ b

a

gdα,

2 kf ∈ R(α) on [a, b] and

∫ b

a

kfdα = k

∫ b

a

fdα.
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Theorem

Let f ∈ R(α) and g ∈ R(α) on [a, b], then fg ∈ R(α) on [a, b].

Proof.

Suppose that f , g ∈ R(α) on [a, b]. From the Algebraic Properties
of the Riemann-Stieltjes Integral, it follows that
(f + g), (f − g) ∈ R(α) on [a, b]. Theorem 3 then gives that

(f + g)2, (f − g)2 ∈ R(α) on [a, b].

Therefore, constant times the difference

fg =
1

4
[(f + g)2 − (f − g)2] ∈ R(α) on [a, b].
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Lemma

Suppose that f is bounded on [a, b] and continuous at s ∈ (a, b).
If α(x) = χ(x − s), then

∫ b

a

fdα = f (s).

In addition, if f is continuous on [a, b] then it is possible to
extend above Lemma 6 to a sequence of points in that
interval. This is the context of our next result we prove.
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Theorem

Suppose < cn >∞

n=1 be a sequence of non-negative real numbers

such that
∑

∞

n=1 cn is convergent, a sequence < sn >∞

n=1 of distinct

point in (a, b) and f is continuous on [a, b]. If

α(x) =
∑

∞

n=1 cnχ(x − sn), then

∫ b

a

fdα =
∞∑

n=1

cnf (sn).
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Proof.

From the definition of α it is clear that α(a) = 0 and
α(b) =

∑
∞

n=1 cn, because a ≤ sn and b ≥ sn for every n ∈ N. Let
u, v ∈ (a, b) be such that u < v and define

A = {n ∈ N : a < sn ≤ u} and B = {n ∈ N : a < sn ≤ v .}
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Proof Continues.

Then A ⊆ B since u < v and therefore

α(u) =
∑
n∈A

cn ≤
∑
n∈B

cn = α(v)

from this it follows that α is monotonicaly increasing. Let ǫ > 0 be
given and M = supx∈[a,b]|f (x)|. Because

∑
∞

n=1 cn is convergent,
there exists a positive integer k such that

∞∑
n=k+1

cn <
ǫ

M
. (1)
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Proof Continues.

Decompose α into two parts so that α = α1 + α2 where
α1 =

∑k
n=1 cnχ(x − sn) and α2 =

∑
∞

n=k+1 cnχ(x − sn). It follows
from Lemma 6 that

∫ b

a

fdα1 =

∫ b

a

fd [

k∑
n=1

cnχ(x − sn)],

= c1

∫ b

a

fd [χ(x − s1)] + . . . + ck

∫ b

a

fd [χ(x − sk)],

= c1f (s1) + . . . + ck f (sk),

=
k∑

n=1

cnf (sn). (2)
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Proof Continues.

Now definition of α together with (1) yields

α2(b) − α2(a) =
∞∑

n=k+1

cnχ(b − sn) −
∞∑

n=k+1

cnχ(a − sn)

=
∞∑

n=k+1

cn <
ǫ

M
.

Consequently, it gives

|

∫ b

a

fdα2| ≤ M[α2(b) − α2(a)],

≤ ǫ. (3)
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Proof Continues.

Now consider

|

∫ b

a

fdα −
k∑

n=1

cnf (sn)| = |

∫ b

a

fd(α1 + α2) −
k∑

n=1

cnf (sn)|,

= |

∫ b

a

fdα1 +

∫ b

a

fdα2 −
k∑

n=1

cnf (sn)|,

= |

∫ b

a

fdα2|,

< ǫ.
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Proof Continues.

Taking limit as k → ∞ both the sides and using the fact that
modulus is continuous. This leads to

|

∫ b

a

fdα − limk→∞

k∑
n=1

cnf (sn)| < ǫ,

i.e., |

∫ b

a

fdα −
∞∑

n=1

cnf (sn)| < ǫ.

Since ǫ > 0 was arbitrary
∫ b

a
fdα =

∑
∞

n=1 cnf (sn).
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Thank You !
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