MA5360 – Assignment 3 Due Date – March 29, 2016

Jaikrishnan Janardhanan

jaikrishnan@iitm.ac.in

Indian Institute of Technology Madras https://bit.ly/ma5360

- 1. Let \mathbb{D} be the unit disk and let $a \in \mathbb{D}$. Write down explicitly the formula of a holomorphic map $f : \mathbb{D} \to \mathbb{D}$ that interchanges 0 and a.
- 2. Prove that any fractional linear transformation maps a pair of concentric circles onto another pair of concentric circles and the ratio of their radii is constant.
- 3. Compute $\int_{\gamma} e^z dz$ where $\gamma(t) = (t, sint), t \in [0, \pi]$.
- 4. Let f be holomorphic in a neighborhood of a closed rectangle R except for finitely many points $z_0, \ldots, z_n \in int(R)$ and suppose that $\lim_{z-z_j} (z-z_j)f(z) = 0$. Prove that $\int_{\mathbb{R}} f(z)dz = 0$
- 5. Compute the integral

$$\int_{0}^{2\pi} e^{\cos\theta} \sin(n\theta - \sin\theta) d\theta$$

- 6. Prove that if f is a continuous function on an open convex set U and holomorphic on $U \setminus \{z_0\}, z_0 \in U$, then $\int_{\gamma} f(z) dz = 0$ for any closed path γ such that $\gamma^* \subset U$.
- 7. Let γ be a closed path in \mathbb{C} that misses 0. Show directly that the value of

$$\frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

is an integer.

8. Prove that if U is bounded domain with positively oriented piece-wise regular boundary and $f \in C^0(\overline{U}) \cap H(U)$, then $\int_{\partial U} f(z) dz = 0$.