MA5360 - Assignment 3

Due Date - March 29, 2016

Jaikrishnan Janardhanan jaikrishnan@iitm.ac.in

Indian Institute of Technology Madras
https://bit.ly/ma5360

1. Let \mathbb{D} be the unit disk and let $a \in \mathbb{D}$. Write down explicitly the formula of a holomorphic map $f: \mathbb{D} \rightarrow \mathbb{D}$ that interchanges 0 and a.
2. Prove that any fractional linear transformation maps a pair of concentric circles onto another pair of concentric circles and the ratio of their radii is constant.
3. Compute $\int_{\gamma} \mathrm{e}^{z} \mathrm{~d} z$ where $\gamma(\mathrm{t})=(\mathrm{t}, \sin \mathrm{t}), \mathrm{t} \in[0, \pi]$.
4. Let f be holomorphic in a neighborhood of a closed rectangle R except for finitely many points $z_{0}, \ldots, z_{n} \in \operatorname{int}(R)$ and suppose that $\lim _{z-z_{j}}\left(z-z_{j}\right) f(z)=0$. Prove that $\int_{\mathrm{R}} \mathrm{f}(z) \mathrm{d} z=0$
5. Compute the integral

$$
\int_{0}^{2 \pi} e^{\cos \theta} \sin (n \theta-\sin \theta) d \theta
$$

6. Prove that if f is a continuous function on an open convex set U and holomorphic on $\mathrm{U} \backslash\left\{z_{0}\right\}, z_{0} \in \mathrm{U}$, then $\int_{\gamma} \mathrm{f}(z) \mathrm{d} z=0$ for any closed path γ such that $\gamma^{*} \subset \mathrm{U}$.
7. Let γ be a closed path in \mathbb{C} that misses 0 . Show directly that the value of

$$
\frac{1}{2 \pi \mathrm{i}} \int_{\gamma} \frac{\mathrm{d} z}{z-z_{0}}
$$

is an integer.
8. Prove that if U is bounded domain with positively oriented piece-wise regular boundary and $f \in \mathcal{C}^{0}(\bar{u}) \cap H(U)$, then $\int_{\partial u} f(z) d z=0$.

