# MA5360 - Assignment 2 

Due Date - March 1, 2016

Jaikrishnan Janardhanan
Indian Institute of Technology Madras
jaikrishnan@iitm.ac.in
https://bit.ly/ma5360

1. Formulate a version of chain rule for composition of $\mathbb{C}$-differentiable functions and give a short proof. What can you tell about composition of complex-analytic functions?
2. Let $D \subset \mathbb{C}$ be a domain and suppose $f \in H(D)$. Show that
a) if $\bar{f} \in H(D)$ then $f$ is constant;
b) if $|f|$ is constant then so is $f$;
c) if $\mathrm{f}=\mathfrak{u}+\mathfrak{i} v$ then $\triangle \mathfrak{u}=\Delta v \equiv 0$. Here $\triangle$ denotes the Laplacian.
d) $\bar{f}(\bar{z})$ is holomorphic on the domain $D^{*}:=\{\bar{z}: z \in \mathrm{D}\}$.
3. Show that the function $f(z)=\sqrt{|x y|}$ satisfies the Cauchy-Riemann equations at 0 but is not $\mathbb{C}$-differentiable at 0 .
4. Let $f(z)=\sum c_{n} z^{n}$ be a power series that converges in $D(a, R), R>0$ and $f^{\prime}(0)=$ $c_{1} \neq 0$. Prove the equality

$$
|f(z)-f(w)|=|z-w|\left|\sum c_{n}\left(z^{n-1}+z^{n-2} w+\cdots+z w^{n-2}+w^{n-1}\right)\right|
$$

for all $z, w \in D(0, R)$ and consequently that $f$ is injective on the disc $D(0, r)$ if $0<r<R$ and the following inequality holds:

$$
\sum_{n=2}^{\infty} n\left|c_{n}\right| r^{n-1}<\left|c_{1}\right|
$$

5. Let $f(z)=\sum c_{n} z^{n}$ be a power series that converges in $D(a, R), R>0$ and suppose $0<r<R$. Show:

$$
\left.\frac{1}{2 \pi} \int_{0}^{2 \pi} \right\rvert\, \mathrm{f}\left(\left.\mathrm{r} e^{i t}\right|^{2} d t=\sum\left|\mathrm{c}_{n}\right|^{2} \mathrm{r}^{2 n}\right.
$$

Use this equality to deduce that a bounded complex-analytic function on $\mathbb{C}$ must be constant.
6. Show that the function $\cos z$ maps the strip $B=\{z: 0<\operatorname{Re} z<\pi\}$ onto the domain $U=\mathbb{C} \backslash\{x \in \mathbb{R}:|x| \geqslant 1\}$ conformally and injectively. Find an expression for its inverse in terms of the logarithm.
7. Look up the definition of real-analytic functions in $\mathbb{R}^{n}$. Let $f: U \rightarrow \mathbb{C}$ be a complex-analytic function. Are Ref and Imf real-analytic?
8. Let $f(z)=\sum c_{n} z^{n}$ be a convergent power series on $D:=D(0, R)$. Show that for each $0<r<R$ and $m>1,\left|f^{(m)}(0)\right| \leqslant m!M(r) / r^{m}$ where $M(r)=\sup \{|f(z)|:$ $|z|=r\}$.

