MA5360 - Assignment 1 Due Date - February 16, 2016

Jaikrishnan Janardhanan
jaikrishnan@iitm.ac.in

Indian Institute of Technology Madras
https://bit.ly/ma5360

1. Prove the reverse triangle inequality: $|w-z| \geqslant \| w|-|z||$ for all $z, w \in \mathbb{C}$ with equality iff either z or w is real positive multiple of the other.
2. Determine all positive integers n for which i is an n-th root of unity.
3. Let $n \geqslant 1$ and let $\omega_{0}, \ldots, \omega_{n-1}$ be the n-th roots of unity. Show that
a) $\left(z-\omega_{0}\right)\left(z-\omega_{1}\right) \cdots\left(z-\omega_{n-1}\right)=z^{n}-1$;
b) $\omega_{0}+\cdots+\omega_{n-1}=0$ if $n>1$;
c) $\omega_{0} \times \cdots \times \omega_{n-1}=(-1)^{n-1}$;
d) $\sum_{j=0}^{n-1} \omega_{j}^{k}= \begin{cases}0, & 1 \leqslant k \leqslant n-1 \\ n, & k=n .\end{cases}$
4. Given an example of a Jordan loop of infinite length.
5. Show that any path $\gamma:[a, b] \rightarrow \mathbb{C}$ is rectifiable and that

$$
\mathrm{L}(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(\mathrm{t})\right| \mathrm{dt} .
$$

Hint: Use the mean value theorem.
6. Show that if there is a branch of \sqrt{z} on an open set U with $0 \notin \mathrm{U}$, then there is also a branch of $\arg z$.
7. Let γ parametrize a square traversed counter-clockwise and z be a point in the interior of the square. Show that $\operatorname{Ind}(\gamma, z)=1$. What if γ was clockwise?
8. Let $\gamma:[a, b] \rightarrow \mathbb{C}$ be a curve. Show that $\operatorname{Ind}(\gamma, z)$ is continuous on $\mathbb{C} \backslash \gamma^{*}$.
9. Let $\gamma_{1}:[a, b] \rightarrow \mathbb{C}$ and $\gamma_{2}:[c, d] \rightarrow \mathbb{C}$ be two curves such that $\gamma_{1}(b)=\gamma_{2}(c)$. Define a natural way to "add" these curves to produce a third curve γ_{3}. Now if $z \in \mathbb{C} \backslash \gamma_{3}^{*}$, write down an expression for $\operatorname{Ind}\left(\gamma_{3}, z\right)$ in terms of $\operatorname{Ind}\left(\gamma_{1}, z\right)$ and $\operatorname{Ind}\left(\gamma_{2}, z\right)$.
Hint: You can assume, without loss of generality, that $\mathrm{c}=\mathrm{b}$.
10. Let $\gamma:[\mathrm{a}, \mathrm{b}] \rightarrow \mathbb{C}$ be a closed curve that misses 0 and let $z_{1}=\gamma\left(\mathrm{t}_{1}\right)$ and $z_{2}=\gamma\left(\mathrm{t}_{2}\right)$ be two points on the curve with $\mathrm{a}<\mathrm{t}_{1}<\mathrm{t}_{2}<\mathrm{b}$. Let $\gamma_{1}:=\left.\gamma\right|_{\left[\mathrm{t}_{1}, \mathrm{t}_{2}\right]}$ be the sub-arc on the curve from z_{1} to z_{2} and let $\gamma_{2}:=\left.\gamma\right|_{\left[t_{2}, b\right]}+\left.\gamma\right|_{\left[a, t_{1}\right]}$ be the sub-arc from z_{2} to z_{1}. Suppose that z_{1} lies in the lower half plane and z_{2} in the upper half plane. If γ_{1} does not meet the negative real axis and γ_{2} does not meet the positive real axis, prove that $\operatorname{Ind}(\gamma, 0)=1$.

