MA5360 – Assignment 1 Due Date – February 16, 2016

Jaikrishnan Janardhanan

jaikrishnan@iitm.ac.in

Indian Institute of Technology Madras https://bit.ly/ma5360

- 1. Prove the reverse triangle inequality: $|w z| \ge ||w| |z||$ for all $z, w \in \mathbb{C}$ with equality iff either z or w is real positive multiple of the other.
- 2. Determine all positive integers n for which i is an n-th root of unity.
- 3. Let $n \ge 1$ and let $\omega_0, \ldots, \omega_{n-1}$ be the n-th roots of unity. Show that

a)
$$(z - \omega_0)(z - \omega_1) \cdots (z - \omega_{n-1}) = z^n - 1;$$

b) $\omega_0 + \cdots + \omega_{n-1} = 0$ if $n > 1;$
c) $\omega_0 \times \cdots \times \omega_{n-1} = (-1)^{n-1};$
d) $\sum_{j=0}^{n-1} \omega_j^k = \begin{cases} 0, & 1 \le k \le n-1 \\ n, & k = n. \end{cases}$

- 4. Given an example of a Jordan loop of infinite length.
- 5. Show that any path $\gamma:[a,b] \to \mathbb{C}$ is rectifiable and that

$$L(\gamma) = \int_{a}^{b} |\gamma'(t)| dt.$$

Hint: Use the mean value theorem.

- 6. Show that if there is a branch of \sqrt{z} on an open set U with $0 \notin U$, then there is also a branch of arg z.
- 7. Let γ parametrize a square traversed counter-clockwise and z be a point in the interior of the square. Show that $Ind(\gamma, z) = 1$. What if γ was clockwise?
- 8. Let $\gamma : [a, b] \to \mathbb{C}$ be a curve. Show that $\operatorname{Ind}(\gamma, z)$ is continuous on $\mathbb{C} \setminus \gamma^*$.
- Let γ₁: [a, b] → C and γ₂: [c, d] → C be two curves such that γ₁(b) = γ₂(c). Define a natural way to "add" these curves to produce a third curve γ₃. Now if z ∈ C \ γ₃^{*}, write down an expression for Ind(γ₃, z) in terms of Ind(γ₁, z) and Ind(γ₂, z).

Hint: You can assume, without loss of generality, that c = b.

10. Let $\gamma : [a, b] \to \mathbb{C}$ be a closed curve that misses 0 and let $z_1 = \gamma(t_1)$ and $z_2 = \gamma(t_2)$ be two points on the curve with $a < t_1 < t_2 < b$. Let $\gamma_1 := \gamma|_{[t_1,t_2]}$ be the sub-arc on the curve from z_1 to z_2 and let $\gamma_2 := \gamma|_{[t_2,b]} + \gamma|_{[a,t_1]}$ be the sub-arc from z_2 to z_1 . Suppose that z_1 lies in the lower half plane and z_2 in the upper half plane. If γ_1 does not meet the negative real axis and γ_2 does not meet the positive real axis, prove that $\operatorname{Ind}(\gamma, 0) = 1$.