
Harmonic Functions

In this short chapter, we study harmonic functions. The study of harmonic functions orig-
inally arose from physics but our interest in them stems from the fact that the real and
imaginary parts of holomorphic functions are harmonic. We will study the basic properties of
harmonic functions in this chapter. For a more extensive treatment, check any good textbook
on potential theory (I recommend Ransford’s textbook.)

1 Definition and basic properties

Definition 1. Let U ⊂ C be open. A function u : U → R, u ∈ C2(U) is said to be harmonic if
the laplacian of u vanishes, i.e., if

∂2u

∂x2
+
∂2u

∂y2
= 0.

It is immediate from the CR-equations that the real and imaginary parts of holomorphic
functions are automatically harmonic. A more complicated example follows:

Example 2. Let f : U → R be holomorphic and suppose that f(z) 6= 0∀z ∈ U. Then log |f| is
harmonic. To see this, first observe that being harmonic is a local property and therefore it
suffices to consider a point z ∈ U and prove that log |f| is holomorphic in some open neigh-
bourhood of z. As f(z) 6= 0, we can find a small neighbourhood V ⊂ U such that f(V) is
contained in a small disk that misses 0. On this disk, we can find a continuous, and therefore
holomorphic branch of the logarithm, say h. Now, h◦f is holomorphic on V and as h is branch
of the logarithm, it follows that Reh ◦ f = log |f|. This proves that log |f| is harmonic on V and
therefore, log |f| is harmonic on U.

Our strategy in the above example was to locally exhibit log |f| as the real part of a holomor-
phic function. The following theorem says that this can be done for all harmonic functions

Theorem 3. Let u : U → R be a harmonic function. Then for each z ∈ U, we can find a
neighbourhood V of z and a holomorphic function f on V such that u = Ref.

Proof. let g := ux − iuy. Then the fact that u is harmonic and the equality of mixed partial
derivatives imply that g ∈ H(U). Let z ∈ U and let V be a small disk centred at z and fully
contained in U. On this disk V, g has an anti-derivative, say f. Let Ref = h. Then hx = ux
and hy = uy because f ′ = g. From this it follows that u − h is a constant c. It follows that
g− c is the required holomorphic function.

Corollary 4. Harmonic functions are C∞ on their domain of definition.

Definition 5. Let u : U → R be harmonic. We say that a harmonic function v : U → R is a
harmonic conjugate for u if u+ iv is holomorphic.
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Remark 6. It is easy to see that harmonic conjugates are unique up to a constant. A harmonic
function need not necessarily have a harmonic conjugate on U. Take, for instance, log z which
is harmonic on C \ 0.

Remark 7. It is interesting to determine on which domains U, every harmonic function
has a harmonic conjugate. These are precisely the simply-connected domains. These are also
precisely the domains on which every nowhere vanishing holomorphic function has a continuous
branch of the logarithm. An ad-hoc definition of simply-connected is as follows: A domain U
is said to be simply-connected if C∗ \U is connected.

2 The maximum principle

We will prove several facts about harmonic functions that are consequences of their relationship
with holomorphic functions.

Theorem 8 (The identity theorems). Let U be a domain and suppose that u is a harmonic
function on U that vanishes on an open subset V. Then u ≡ 0.

Proof. The function g := ux − iuy is holomorphic and identically 0 on V. By the principle
of analytic continuation for holomorphic functions, it follows that g ≡ 0. This means that
ux, uy ≡ 0 from which it follows that u ≡ 0.

Remark 9. The identity theorem or principle of analytic continuation for holomorphic func-
tions says that a holomorphic function that vanishes on an indiscrete set is identically 0. This
stronger statement is not true for harmonic functions: consider, for example, the functions
u(x, y) = x = Rez.

Theorem 10 (Mean-value property). Let u : U→ R be harmonic and suppose that D(a, R) ⊂
U. Then

u(a) =
1

2π

∫2π
0

u(a+ Reit)dt =
1

πR2

∫∫
D(a,R)

u(x, y)dxdy.

Proof. On the disk D(a, R), we can find a holomorphic function f such that Ref = u. The
result now follows immediately from the fact that holomorphic functions satisfy the mean value
property.

Theorem 11 (The maximum principle). Let U be a domain and suppose that u is harmonic
on U. If u has a local-maximum on U then u is identically constant.

Proof. Let a ∈ U be a point of local-maximum and let u(a) = M. From the definition of
local maxima, we can find a disk D(a, R) ⊂ U such that u(z) 6M on D(a, R). We claim that
u ≡M on D(a, R). If not, we can find b ∈M and a disk D(b, r) ⊂ D(a, R) such that u < M
on D(b, r). From the mean value property, we see that

M = u(a) =
1

πR2

∫∫
D(a,R)

u(x, y)dxdy

=
1

πR2

∫∫
D(b,r)

u(x, y)dxdy+

∫∫
D(a,R)\D(b,r)

u(x, y)dxdy <
1

πR2
M× πR2 =M,
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which is a contradiction. This proves that u ≡ M on D(a, R) and thus on U by the identity
theorem for harmonic functions.

Theorem 12. Let u : C→ R be harmonic and bounded. Then u is constant.

Proof. Let a, b ∈ C. The goal is to prove that u(a0 = u(b). Choose R > 0 very large. From
the mean value property, it follows that

u(a) =
1

πR2

∫∫
u(x, y)dxdy,

and a similar expression for u(b). This means that

u(a) − u(b) =
1

πR2

[∫∫
D(a,R)\D(b,R)

u(x, y)dxdy−

∫∫
D(b,R)\D(a,R)

u(x, y)dxdy

]
If R→∞, it is easy to see that

area(D(b, R) \D(a, R)) + area(D(a, R) \D(b, R))

area(D(a, R)
→ 0

This means that if M is the upper bound for u, then

u(a) − u(b) = 2M× quantity that goes to 0.

This is proves u(a) = u(b).
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