
Complex Integration

As we have mentioned in the previous chapter, one of the central results of this course is
the fact that holomorphic functions are in fact complex-analytic. To prove this we need to
develop the machinery of complex integration. The main result is—just as in the case of
real analysis—the link between integration and differentiation. We will prove a version of the
fundamental theorem of calculus for complex line integrals. We will also prove a version of
Green’s theorem which will be the main tool used in proving the famous result of Cauchy on
the vanishing of line integrals of holomorphic functions on closed paths.
Our approach will be through differential forms and vector fields. This will allow us to

understand holomorphicity from the perspective of real analysis.

1 Complex line integrals

Let f : [a, b]→ C be continuous and let f = u(t) + iv(t). We define∫b
a

f(t)dt =

∫b
a

u(t)dt+ i

∫b
a

v(t)dt.

Let α,β ∈ C and let g : [a, b]→ C, then∫b
a

(αf+ βg)dt = α

∫b
a

f(t)dt+ β

∫b
a

g(t)dt.

We have the following useful inequality:∣∣∣∣∣
∫b
a

f(t)dt

∣∣∣∣∣ 6
∫b
a

|f(t)|dt.

To see this, let
∫b
a f(t)dt = re

iθ. Then∣∣∣∣∣
∫b
a

f(t)dt

∣∣∣∣∣ = r = e−iθ
∫b
a

f(t)dt

= Re

[
e−iθ

∫b
a

f(t)dt

]
=

∫b
a

Re
[
e−iθf(t)

]
dt

6
∫b
a

|f(t)|dt.

Definition 1. Let γ : [a, b]→ C be a C1 curve and let f : γ∗ → C be continuous. We define∫
γ

f(z)dz :=

∫b
a

f(γ(t))γ ′(t)dt.
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1 Complex line integrals

Note that the above integral is the limit of the complex Riemann sums∑
i

f(zi)(zi+1 − zi),

where the points zi := γ(ti) are the vertices of a polygonal approximation of γ. Replacing
zi+1−zi by |zi+1−zi| above, we recover the definition of integration with respect to arc-length∫

γ

f(z)|dz| :=

∫
γ

f(z)ds.

It is clear that
∫
γ dz = γ(b) − γ(a).

Now, let Γ = γ ◦ Φ where Φ : [c, d] → [a, b] is a strictly increasing homeomorphism, i.e.,
orientation preserving. Then ∫

Γ

f(z)dz =

∫d
c

f(Γ(u))Γ ′(u)du.

By chain rule, this is same as ∫d
c

f(γ ◦Φ(u))γ ′(Φ(u))Φ ′(u)du.

Setting t = Φ(u) and applying change of variables, we see that the above is same as∫b
a

f(γ(t))γ ′(t)dt =

∫
γ

f(z)dz.

If Φ were orientation reversing then
∫
γ f(z)dz = −

∫
Γ f(z)dz.

Now suppose γ is a path. Then, we can write γ = γ1+ · · ·+γn where γi’s are all C1 curves
such that the ending point of γi coincides with the starting point of γi+1. Then we define∫

γ

f(z)dz :=
∑
i

∫
γi

f(z)dz.

We have the following extremely useful inequality:∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ 6 ∫b
a

|f(γ(t))||γ ′(t)|dt =

∫
γ

|f(z)|dz.

The use of this inequality is easily seen when f is bounded above by M. Then, we immedi-
ately see that ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ 6ML(γ)
The above inequality can be used to show that the index of a closed path with respect to a
point on the unbounded component is 0:

Ind(γ,w) =
1

2π

∫
γ

dz

z−w

and therefore
|Ind(γ, z)| 6

L(γ)

2πd(w,γ∗)
.

The RHS clearly goes to 0 as w→∞ and we are done.
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2 Vector fields

2 Vector fields

We want to study complex line integrals from the viewpoint of vector calculus. Complex line
integrals are special cases of circulations of vector fields along curves. We will now study this
in detail.

Definition 2. Let U ⊂ Rn be a domain. A continuous vector field on U is a map
−→
X : U→ Rn.

We can visualize a vector field as specifying vectors on each point of U starting at the point.
The most common example of a vector field is the electric field or magnetic fields which were
introduced by Faraday.

Example 3. The identity function on U is a vector field and it is a radial vector field.

Given a vector field
−→
X on U, we can define some special curves that “move” along the field.

We say a C1 curve γ : [a, b]→ C is an integral curve or an orbit of
−→
X , if

γ ′(t) =
−→
X (γ(t)) ∀t ∈ [a, b].

Let
−→
X be a vector field on U. The standard example to keep in mind is the electric field or

in general a force field. Let γ : [a, b] → U be a regular curve. Recall from physics that the
work done to move unit mass along this path γ from γ(a) to γ(b) is given by∫

γ

〈
−→
X , T̂〉ds,

where T̂(x) is the unit tangent vector to γ at x. Note that at x = γ(t), T̂ =
|γ ′(t)
|γ ′(t)| . Expanding

the integral, we see that∫
γ

〈
−→
X , T̂〉ds =

∫b
a

〈
−→
X (γ(t)),

γ ′(t)

|γ ′(t)|
〉|γ ′(t)|dt =

∫b
a

〈
−→
X (γ ′(t)〉dt.

We take the above as the definition of circulation of
−→
X along the curve γ. In terms of

components, we see that the circulation is∫b
a

X1(γ(t))x
′
1(t)dt+ · · ·+ Xn(γ(t))x ′n(t)dt,

which we abbreviate as ∫
γ

X1dx1 + X2dx2 + . . . Xndxn.

The integrated above is known as a continuous 1-form and we use the notationω−→
X
.Theyarejustadifferentwayofexpressingavectorfield.Thekeypropertyof1−formsisthattheyareobjectsthatcanbeintegratedalongcurves.0−formsarejustfunctionsonU.IfhiscontinuouslydifferentiableonU,

then we define the 1-form
dh =

∂h

∂x1
dx1 + · · ·+

∂h

∂xn
dxn,

which is a notation familiar from calculus. Note that the vector field corresponding to dh is
nothing but the gradient vector field of h.
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2 Vector fields

Now, we relate the complex line integral of a function f on γ∗ and circulation. We compute∫
γ

f(z)dz =

∫b
a

f(γ(t))γ ′(t)dt

=

∫b
a

(u(x(t), y(t) + iv(x(t), y(t))(x ′(t) + y ′(t))dt

=

∫b
a

(ux ′ − vy ′)dt+ i

∫b
a

(uy ′ + vx ′)dt.

The complex line integral of any complex-valued function has the circulation of f along γ as
real part and circulation of if along γ as imaginary part. This last observation motivates us
to consider more general vector fields and forms:

ω = P(x, y)dx+Q(x, y)dy,

where P and Q are now complex-valued functions. It is easy to see that under the more general
notion of 1-form, the complex line integral of f along γ is same as the integral of the form
f(z)dx+ if(z)dy along γ.
We now present a n-dimensional version of the fundamental theorem of calculus.

Theorem 4. Let UI ⊂ Rn be open and γ : [a, b] → U be a path with starting point A and
ending point B. Let h ∈ C1(U) (real or complex-valued function) and let

−→
X = dh be the

gradient vector field. Then ∫
γ

dh = h(B) − h(a).

In other words, the integral of a gradient vector field depends only on the endpoints and
not on the path.

Proof. Let xi(t) be the components of γ(t). Then by definition∫
γ

dh =

∫b
a

∑
i

∂h

∂xi
(γ(t)x ′i(t)dt =

∫b
a

d

dt
(h ◦ γ)(t)dt = h(B) − h(A).

Definition 5. A continuous vector field
−→
X on a domain U ⊂ Rn is said to be conservative if the

circulation of
−→
X along any path depends only on the endpoints of the path. More precisely,∫

γ1

ω−→
X

=

∫
γ2

ω−→
X
.

Gradient vector fields are obviously conservative. A necessary and sufficient condition for a
vector field to be conservative is the vanishing of the circulation along any closed path.

Theorem 6. A continuous vector field
−→
X on a domain U ⊂ Rn is conservative iff it is a

gradient vector field.
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2 Vector fields

Proof. We must show that every conservative vector field is the gradient vector field of some
h ∈ C1(U). The idea behind the proof is reminiscent of the proof that the existence of a branch
of square root implies the existence of a branch of arg. Fix a point x0 ∈ U and define

h(x) :=

∫
γx

ω−→
X
,

where γx is some path from x0 to x. This is well-defined because, the vector field
−→
X is

conservative. If
−→
X = (X1, . . . , Xn), we must check that ∂h∂xi = Xi. Now,

∂h

∂xi
= lim
t→0

h(x+ tei) − h(x)

t
= Xi(x),

where (e1, . . . , en) is the standard basis of Rn. Now, the value of h(x+tei) might be computed
by integrating ω−→

X
along any path from x0 to x + tei; we take the path as the sum of two

paths, one path from x0 to x and then a straight line from x to x+ tei which we parametrize
as x+ stei, s ∈ [0, 1]. Hence, the difference quotient just becomes∫1

0

Xi(x+ stei)ds

and it is clear that as t→ 0, we have the limit Xi(x) as required.

The function h which satisfies dh = ω−→
X

is said to be a potential function and the form
ω−→
X

is said to be an exact form. It follows that a 1-form is exact iff its integral along any
closed path is 0.
To check that a vector field

−→
X is conservative, one need not check that the circulation is

zero over all paths. The following result reduces our effort if U is a star-like domain.

Theorem 7. Let U ⊂ Rn be star-like. A vector field
−→
X is conservative iff its circulation is

zero along the boundary of any triangle.

Proof. In the proof of the previous theorem, fix x0 to be the special with respect to which U
is star-like and consider the path γx to be straight line-segments.

Definition 8. We say that the form ω is locally exact on U if for each x ∈ U, we can find a
small ball B(x, r) ⊂ U such that for some h ∈ C1(B(x, r), we have ω = dh on B(x, r).

The following corollary is obvious:

Corollary 9. A 1-form ω is locally exact on U iff only if its integral along the boundary of
any triangle is 0.
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3 The fundamental theorem of complex calculus

3 The fundamental theorem of complex calculus

Now, we introduce holomorphicity in the picture. Note that the complex line integral of the
function f along a path γis same as the integral of the form fdz along γ. Recall that

∂f

∂z
(a) :=

1

2

(
∂f

∂x
− i

∂f

∂y

)
∂f

∂z
(a) :=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

We also write dz = dx+ idy and dz = dx− idy. It immediately follows that for a C1 function
h (real or complex-valued)

dh =
∂h

∂z
dz+

∂h

∂z
dz.

Moreover, any 1-form Pdx+Qdymight be written in the formAdz+Bdz whereA = 1/2(P−iQ)

and B = 1/2(P + iQ). Now if the form f(z)dz is exact on the domain U ⊂ C then this means
that there is a function h ∈ C1(U) with the property that

dh =
∂h

∂z
dz+

∂h

∂z
dz = fdz.

This means that ∂h∂z = 0 or in other words h ∈ H(U). This shows that a form fdz is exact iff
it has a holomorphic antiderivative.

Theorem 10. Let f be a continuous function on the domain U ⊂ C. Then the complex line
integral of f along curves γ : [a, b] → U is independent of path iff f has a holomorphic
anitderivative F on U. In this case one has:∫

γ

f(z)dz =

∫
γ

F ′(z)dz = F(B) − F(A).

Proof. Fix z0 ∈ U and for each z let γz be any path from z0 to z and set

F(z) =

∫
γz

f(w)dw.

Again, F(z) is well-defined. To prove F ′(z) = f(z), the difference quotient is F(z+h)−F(z)h

which we can again evaluate by considering a path from z0 to z and then considering the
straight line path σ from z to z+ h. Thus

F ′(z) = lim
h→0

1

h

∫
σ

(f(w) − f(z))dw

and by ML-inequality the above integral is bounded by

1

h
∗ sup{|f(w) − f(z)| : w ∈ σ∗} ∗ h→ 0

as h→ 0 as f is continuous.
Conversely, if F ′(z) = f(z) then∫

γ

f(z)dz =

∫b
a

F ′(γ(t))γ ′(t)dt =

∫b
a

(F ◦ γ) ′(t)dt = F(b) − F(a).
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4 Examples

Any continuous function on R has an anti-derivative but for complex functions one requires
the additional hypothesis of path independence of line integrals. The reason why we require
this is because on the real-line there is only one “natural” path to go from a to b whereas on
the complex plane there are many.

4 Examples

Most examples of vector fields come from physics. We give a few of them:

� Two important vector fields on C are given by the functions z and −z. The vector field
z points radially outward whereas the vector field −z points radially inward.

� The electric, magnetic and gravitational vector fields in space.
� Vector field for the movement of air on Earth will associate for every point on the
surface of the Earth a vector with the wind speed and direction for that point. This
can be drawn using arrows to represent the wind; the length (magnitude) of the arrow
will be an indication of the wind speed. A ‘’high” on the usual barometric pressure map
would then act as a source (arrows pointing away), and a ‘’low” would be a sink (arrows
pointing towards), since air tends to move from high pressure areas to low pressure areas.

� Velocity field of a moving fluid. In this case, a velocity vector is associated to each point
in the fluid.

Examples of complex line integrals

� Let γ(t) = eit, t ∈ [0, 2π] be the standard parametrization of the unit circle. Computing∫
γ

1/zdz =

∫2π
0

ieit

eit
= 2πi.

This just means that the Ind(γ, 0) = 1. On the other hand,∫
γ

1/z|dz| =

∫b
a

dt

eit
= 0.

� Let f(z) = z2 and γ = γ1+γ2, where γ1 is the portion of the parabola y = x2 from (0, 0)

to (1, 1) and γ2 is the vertical line segment from (1, 1) to (1, 0). We can parametrize γ1
as t+ it2, t ∈ [0, 1] and γ2 as the negative of the curve 1+ ti, t ∈ [0, 1] and we see that∫

γ1

z2dz =

∫1
0

(t+ it2)2(1+ 2it) =

∫1
0

(t2 − 5t4 + 2it3(2− t2))dt = 2/3(i− 1)

and

−

∫
γ2

z2dz = −

∫1
0

(1+ ti)2i = −

∫1
0

i− 2ti− it2dt = 1− 2/3i.

Hence the required line integral is 1/3. We can evaluate this integral in much easier
way by observing that the function z2 has an anti-derivative and hence its complex-line
integral is path independent. So, we may consider the path from 0 to 1 as the line
segment and by the fundamental theorem of calculus for complex line integrals∫

γ1+γ2

z2dz = z3/3|1 + z
3/3|0 = 1/3.
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5 Domains with regular boundary

� Consider the function f(z) = 1/m(z− a)m. This function has an derivative (z− a)m−1.
This shows that ∫

γ

(z− a)kdz = 0,

whenever k ∈ N along any closed path γ.
If m < 0 then F is holomorphic on C \ {a} and F ′(z) = (z− a)m−1. Hence if k 6= −1 is a
negative integer and a 6∈ γ∗, again

∫
γ(z− a)

kdz = 0.
If k = −1, then we already know that

∫
γ

dz
(z−a) = 2πiInd(γ, a) which might not be 0.

This shows that the function 1
z−a does not have an anti-derivative on C \ {a}.

� Let us compute
∫
γ sin zdz where γ is the arc of the curve y = x3 from (0, 0 to (1, 1). As

sin z has anti-derivative − cos z the value of the integral is same as − cos(1+ i) + cos 0 =
1− cos(1+ i).

� The standard methods of integration such as integration by parts and change of variables
can be put to use when we are integrating functions that have anti-derivatives. Let
f, g ∈ H(U) and F = f · g. Then F ′ = fg ′ + gf ′ and consequently

F(B) − F(A) =

∫
γ

F ′(z)dz =

∫
γ

f ′(z)g(z)dz+

∫
γ

f(z)g ′(z)dz.

Hence to evaluate
∫
γ z sin z where γ is a path joining A and B and note that if F = −z cos z

then F ′(z) = − cos z+ z sin z and consequently

−B cosB+A cosA =

∫
γ

z sin zdz+
∫
γ

− cos zdz,

and hence the required integral is

sinB− sinA+A cosA− B cosB.

5 Domains with regular boundary

Definition 11. A domain U ⊂ C is said to be a domain with regular boundary if ∂U is a finite
disjoint union of regular Jordan loops.

Similarly, we can define a domain with piece-wise regular boundary. Now, if U is a domain
with regular boundary, then ∂U = γ∗1 t γ∗2 t · · · t γ∗n. We want to orient the boundary curves
γi. Before doing this, we first need the following proposition which completely describes how
such domains look like.

Proposition 12. Let U ⊂ C be a domain with piece-wise regular boundary and let ∂U =

γ∗1tγ∗2t· · ·tγ∗n, where γi are regular Jordan loops. Then, after reindexing if necessary,

1. γ∗1 ⊂ Int(γi), i = 2, . . . , n
2. Int(γ2), Int(γ2), . . . , Int(γn) are disjoint.
3. U = Int(γ1) \ (Int(γ1) ∪ · · · ∪ Int(γn).
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6 Green’s formula

Proof. The domain U is connected and therefore, it follows that that U is fully contained in
either Int(γi) or Ext(γi). Our claim is that there is precisely one i, which we reindex as 1,
such that U ⊂ Int(γi) and for j 6= i, we have

U = Int(γ1) \ (Int(γ2) ∪ . . . Int(γn)) .

This claim will follow from the following observations:

� γ∗i ⊂ Int(γj) =⇒ Int(γi) ⊂ Int(γj). To see this mote that Ext(γj) ∩ γ∗i = ∅. This
means that the connected component Ext(gammaj)must be fully contained in one of the
connected components Ext(γi) or Int(γi). It cannot be Int(γi) as Ext(γj) is unbounded.
Taking complements, we see that Int(γi) ⊂ Int(γj).

� If Int(γi)∩Int(γj) = ∅ thenU ⊂ Ext(γi)∩Ext(γj). IfU ⊂ Int(γi), thenU ⊂ Int(γi)∪γ∗i
in which event it is not possible that γ∗j ⊂ ∂U.

Definition 13 (Orientation). Let U be a domain with piece-wise regular boundary and let ∂U =

γ∗1 t γ∗2 t · · · t γ∗n. We say that ∂U is positively oriented if on traversing along each γi in the
direction of increasing t, the domain U is always to the left.

6 Green’s formula

The following is the main result from multivariable calculus that we need to prove Cauchy’s
theorem.

Theorem 14 (Green’s Theorem). Let U ⊂ C be a bounded domain with positively oriented
piecewise regular boundary and let ∂U = γ∗1tγ∗2t· · ·tγ∗n. Let

−→
X = (P,Q) be a continuous

vector field defined on a neighbourhood of U such that P,Q are differentiable functions
and ∂Q

∂x − ∂P
∂y is continuous on U. Then the following identity holds:

∑
i

circγi(
−→
X ) =

∑
i

∫
γi

Pdx+Qdy =

∫ ∫
U

(
∂Q

∂x
−
∂P

∂y

)
dxdy.

Remark 15. The integral over all the various curves γi is often denoted∫
∂U

Pdx+Qdy,

for obvious reasons. The proof is divided into several steps. First we will treat the special case,
U = [a, b] × [c, d]. If P,Q ∈ C1(U) then this case is an easy consequence of the fundamental
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6 Green’s formula

theorem of calculus and Fubini’s theorem. To see this note that∫
∂U

(Pdx+Qdy)

=

∫b
a

P(x, c)dx+

∫d
c

Q(b, y)dy−

∫b
a

P(x, d)dx−

∫d
c

Q(a, y)dy

=

∫b
a

(P(x, c) − P(x, d))dx+

∫d
c

(Q(b, y) −Q(a, y))dy

= −

∫b
a

∫d
c

∂P

∂y
dxdy+

∫d
c

∫b
a

∂Q

∂x
(x, y)dxdy

=

∫ ∫
U

(
∂Q

∂x
−
∂P

∂y

)
dxdy.

We cannot use the fundamental theorem of calculus in the proof of the general case.
Proof of Green’s theorem.
Step 1. U = [a, b] × [c, d]. We use the notation Px := ∂P

∂x and Py := ∂P
∂x and similarly for Q.

We also set
I(R) :=

∫
∂U

(Pdx+Qdy) −

∫∫
U

(Qx − Py)dxdy,

whenever R is a rectangle. We set I := I(U). We divide U into four equal rectangle Ui, i =
1, 2, 3, 4 and give them all the positive orientation. Hence,

I =

4∑
i=1

I(Ui).

If I 6= 0, then, without loss of generality, we may assume that

|I| 6 4|I(U1)|.

We now set I1 = I(U2) and repeat the process and so we can find a rectangles U ⊃ U1 ⊃ U2 ⊃
. . . Un . . . each obtained from the previous one by subdivision into four pieces and

|I| 6 4n|I(Un)|.

Let z0 be the intersection of the nested sequence of compact sets. Let ε > 0. Using Taylor’s
theorem, we can write

P(x, y) = P(z0) + Px(z0)(x− x0) + Py(z0)(y− y0) + R1(z)

Q(x, y) = Q(z0) +Qx(z0)(x− x0) +Qy(z0)(y− y0) + R2(z),

where both |R1(z)|, |R2(z)| 6 ε|z − z0| if |z − z0| < δ. By the continuity of Qx − Py, we can
assume that

(Qx − Py)(z) = (Qx − Py)(z0) + R3(z),
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6 Green’s formula

where |R3(z)| 6 ε if |z − z0| < δ. For n large, we must have Un ⊂ D(z0, δ). Suppose
Un = [an, bn]× [cn, dn], one has∫

∂Un

(Pdx+Qdy)

=

∫bn
an

P(x, cn)dx+

∫dn
cn

Q(bn, y)dy−

∫bn
an

P(x, dn)dx−

∫dn
cn

Q(an, y)dy

= Py(z0)(cn − y0)(bn − an) +Qx(z0)(bn − x0)(dn − cn)

− Py(z0)(dn − yn)(bn − an) −Qx(z0)(an − x0)(dn − cn) + Rn

= (bn − an)(dn − cn)(Qx(z0) − Py(z0)) + Rn,

where

Rn =

∫bn
an

[R1(x, cn) − R1(x, dn)]dx+

∫dn
cn

[R2(bn, y) − R2(an, y)]dy.

For z ∈ ∂Un, |z − z0| 6 Ln, where Ln is the length of the diagonal of Un. This shows that
for n sufficiently large,

|Rn| < εLnPn,

where Pn is the perimeter of Un. We have Ln = 2−nL and Pn = 2−nP which means

|Rn|leqε4
−nεLP.

We also have: ∫∫
Un

(Qx − Py)dxdy = (Qx − Py)(z0)(bn − an)(dn − cn) + R̃n,

where |R̃n| 6 ε4−nA, A being the area of U. Hence

|In| 6 ε4
−n(LP +A)

and thus
|I| 6 ε(LP +A)→ 0as ε→ 0,

and this completes the proof of the first step.
Step 2. In this step we assume that the domain U is the region under the graph of a C1

function, i.e,
U = {(x, y) : a 6 x 6 b, 0 6 y 6 φ(x)},

where φ : [a, b]→ R is smoo1 smooth. We consider a partition of [a, b], a = x0 < x1 < · · · <
xn = b formed by n+1 equidistant points and letmi = inf{φ(x) : xi−1 6 x 6 xi} = φ(ti), ti ∈
[xi−1, xi]. Let Rn be the union of the rectangles

{(x, y) : xi−1 6 x 6 xi, 0 6 y 6 mi}, i = 1, . . . , n.

By definition, each Rn ⊂ U and∫∫
Rn

(Qx − Py)dxdy→
∫∫
U

(Qx − Py)dxdy

From the first step ∫∫
Rn

(Qx − Py)dxdy =

∫
∂Rn

Pdx+Qdy

Step 3. To be done.
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7 Cauchy’s theorem

Theorem 16. Let U ⊂ Cn be a bounded domain with piece-wise regular boundary given
positive orientation and let f be holomorphic in a neighborhood of U. Then∫

∂U

fdz = 0.

Proof. Follows from Green’s theorem and the CR-equations.

Applications.
Cauchy’s theorem is very helpful in evaluating certain real integrals. The idea is extend the

given integral on an interval to some complex line integral on some Jordan curve and then
applying Cauchy’s theorem.

1. Let us compute
∫
0 →∞ cos(t2)dt and

∫∞
0 sin(t2)dt, i.e., limR→∞ cos(t2) and limR→∞ sin(t2).

Consider the function f(z) = eiz
2
integrated on the piece-wise regular path given by

Γ1 = [0, R] followed by the arc of the circle of radius R that subtends an angle of π/4 at 0,
call it Γ2, and Γ3 be the straight line segment from 0 to the endpoint of Γ2. By Cauchy’s
theorem, ∫

γ1

f(z)dz =

∫
γ2

f(z)dz−

∫
γ3

f(z)dz,

or in other words∫R
0

cos t2dt+ i
∫R
0

sin t2dt =
∫R
0

ei(te
iπ/4)2dt−

∫π/4
0

eiR
2e2itRieitdt

=

∫R
)
e−t

2

eipi/4dt−

∫π/4
0

eiR
2e2itRieitdt.

Taking R → ∞, we see that the first integral converges to
√
πeiπ/4. We estimate the

second integral as follows∣∣∣∣∣
∫π/4
0

eiR
2e2itRieitdt

∣∣∣∣∣ 6 R
∫π/4
0

|eiR
2e2it |dt = R

∫π/4
0

e−R
2 sin2tdt

6 R
∫π/4
0

e−R
2tdt =

1

R
(1− e−π/4R

2

) <
1

R
→ 0.

8 Existence of Logarithms

We now discuss the relationship between the existence of anti-derivatives and logarithms.

Proposition 17. Let U ⊂ C be a domain and let f ∈ H(U) without zeroes. Then there is a
continuous branch of the logarithm of f iff the function f ′/f has an anti-derivative on U.

Proof. If let h be a branch of log f. Let z ∈ U and let D be a small disk around f(z) that
misses 0. Then as any two branches of the logarithm of f must differ on D by a constant

12
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integer multiple of 2π, it follows that we can find a continuous branch of log z on D such that
h = log f on D. The chain rule gives that h ′ = f ′/f.
Conversely, assume that f ′/f has an anti-derivative h. Then the function F = e−hf satisfies

F ′(z) = −e−hh ′f+ e−hf ′ = 0.

This means that F = c 6= 0 (a constant). Consequently, if c = eα, then f = eh+α and h+ α is
a branch of the logarithm of f.

We now state a couple of simple corollary’s of Cauchy’s theorem pertaining- to the existence
of logarithms.

Corollary 18. Let f ∈ H(U) then f locally has a holomorphic antiderivative on U. If U is
star-like, then f globally has an antiderviative.

Corollary 19. If f ∈ H(U) without zeroes on U, then f locally has the branch of logarithm
on U. If U is star-like, then f globally has a branch of the logarithm.
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