
Exponential and Trigonometric functions

Our toolkit of concrete holomorphic functions is woefully small. We will now remedy this by
introducing the classical exponential and trigonometric functions using power series.

1 The Exponential function

De�nition 1. We de�ne

exp(z) :=
∞∑
n=0

zn

n!
.

The fact that the series converges on the whole of C to a holomorphic function was shown in the
previous chapter. The famous product law for the exponential now follows from our discussion on
the Cauchy product.

Proposition 2. exp(z +w ) = exp(z) exp(w ).

Proof. Using the Cauchy product, we see that:

exp(z) exp(w ) =
∑
k

∑
n+m=k

znwm

n!m!
=

∑
k

1
k!

(z +w )k = exp(z +w ).

In the intermediate step, we used the binomial theorem. �

The following theorem captures all the familiar properties of the exponential function

Theorem 3. For all z,w ∈ C:

1. exp(z) , 0;
2. exp(−z) = 1

exp(z ) ;
3. exp |R is a positive and strictly increasing function;
4. exp(z) = exp(z);
5. if z ∈ R then |exp (iz) | = 1;
6. | exp(z) | = exp(Rez) ≤ exp( |z |).

Proof. The proof consists of a number of simple checks:

1. Observe that exp(0) = 1 from which it follows that exp(z) exp(−z) = 1.
2. Follows from product law.
3. If x > 0 then exp(x ) > 1 + x . If x < 0, then exp(x ) = 1/ exp(−x ) > 0 from the previous part.

If y > x then exp(y) = exp(x ) exp(y − x ) > exp(x ).
4. Obvious.
5. | exp(iz) |2 = exp(iz) × exp(iz) = exp(0) = 1.
6. if z = x + iy then | exp(z) | = | exp(x ) exp(iy) | = | exp(x ) | = exp(x ).

�
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2 Trigonometric functions

2 Trigonometric functions

We de�ne the following two holomorphic functions:

De�nition 4.

cos(z) =
exp(iz) + exp(−iz)

2
;

sin(z) =
exp(iz) − exp(−iz)

2i
.

Remark 5. The de�nition above does not make any mention of angles. We will reverse-engineer this
de�nition and de�ne angles in terms of trigonometric functions.

The following properties of the trigonometric follows directly from the basic properties of the
exponential function.

Theorem 6. For all z,w ∈ C:

1. (Euler’s formula) exp(iz) = cos(z) + i sin(z);
2. cos(z) is an even function and sin(z) is an odd function;
3. cos2 (z) + sin2 (z) = 1;
4. sin(z +w ) = sin(z) cos(w ) + cos(z) sin(w );
5. cos(z +w ) = cos(z) cos(w ) − sin(z) sin(w );
6. sin(z) =

∑ (−1)2n+1z2n+1
(2n+1)! ;

7. cos(z) =
∑ (−1)nz2n

(2n)!
8. sin′(z) = cos(z), cos′(z) = sin(z).

Caution: The above theorem might give the impression that the trigonometric functions de�ned
above behave exactly the same as the classical trigonometric functions. However, this is untrue for
complex numbers. For instance, if y > 0 then it is easy to see that

cos(iy) =
exp(y) + exp(y)

2
>

(1 + y)
2
,

which shows that cos and hence sin is unbounded on C. In fact, we will show later in the course that
any bounded entire function is forced to be constant!

3 Periodicity and the definition of π

As we have deliberately avoided all mention of angles so as to have a self-contained development, the
properties of the number π are unavailable to us. In fact, we are yet to understand the behavior of
the trigonometric functions on the real-axis. We will now show that sin and cos are periodic function
with period 2π (we will de�ne π shortly). We will also show that the circumference of the unit circle
is 2π .

Let us assume for the moment that we have found t ∈ C such that sin(t ) = 0. Then from the
trigonometric identities, we see that

cos(2t ) = 1 − 2 sin2 (t ) = 1, sin(2t ) = 0,

which means that sin(z + 2t ) = sin(z). Similarly, we can show that 2t is a period of cos as well. Thus,
we are turn our attention to determining the zeroes of sin.
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3 Periodicity and the de�nition of π

Let S denote the set of zeroes of sin. If z ∈ S then

exp(iz) = exp(−iz) = 0

and so exp(2iz) = 1 from which it follows that exp(−2y) = | exp(2iz) | = 1. This forces y to be real.
We have shown that S ⊂ R. Now, we need an useful inequality.

Lemma 7. If 0 < x < 2 then we have

sin(x ) > x (4 − x2)/4 > 0.

Proof. We have from the power series expansion that

| sin(x ) − x | ≤
x3

3!
+
x5

5!
+ . . .

≤
x3

3!
*
,
1 +

[
x2

20

]
+

[
x2

20

]2
+ . . . +

-

≤
x3

3!

(
1 +

1
5
+

1
52
+ . . .

)
< x3/4,

Hence
x − sin(x ) < x3/4

from which the result follows. �

From the above inequality, it follows that sin(1) > 3/4 and therefore cos(1) < 3/4. We apply the
intermediate value theorem on the interval [0, 1] to the function sin− cos to conclude that sin(t ) =
cos(t ) for some t ∈ [0, 1]. Using the trigonometric identities cos(2t ) = sin(4t ) = 0. This shows
that sin has a zero in [0, 4]. Clearly, S is a subgroup. Any additive subgroup of R is either dense or
cyclic. Clearly, S is not dense. Let π be the generator of S . From the inequality above, π > 2 and the
discussion above shows π < 4. This means that 0 < π/2 < 2 and therefore sin(π/2) > 0. But

0 = sin(π ) = 2 sin(π/2) cos(π/2)

which along with the identity sin2 (π/2) + cos2 (π/2) = 1 forces sin(π/2) = 1 and cos(π/2) = 0. This
implies that

sin(π/2 + x ) = sin(π/2 − x )

and as sin is positive on [0,π/2], it follows that sin is positive on (0,π ). It now follows from the
identity

sin(y + x ) sin(y − x ) = sin2 (y) − sin2 (x )

that if 0 < x < y < π/2 then sin2 (y) > sin2 (x ) and hence sin is an increasing function on [0,π/2]. If
p is a period of sin(z) then

sin(z) = sin(z + p) = sin(z) cos(p) + cos(z) sin(p).

If z = 0 then p = nπ ,n ∈ Z. However as sin is an odd function, the period of sin must be 2nπ . In
a similar way, we can prove that the periods of cos is also 2nπ . We can summarize this discussion
succinctly in the following:
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4 Argument of a complex number

Theorem 8. The following are equivalent:

1. p is a period of exp;
2. exp(p) = 1;
3. p ∈ {2nπi : n ∈ Z}.

Henceforth, we shall freely use the basic properties of trigonometric functions without fuss.

4 Argument of a complex number

Given any non-zero complex number z, we can de�ne the unit vector z/|z | = u + iv . Now |u | ≤ 1, we
can �nd a unique θ ∈ [0,π ] such that cos(θ ) = 1. This is because cos is a strictly-decreasing function
from 1 to −1 in this interval. Now, either sin(θ ) = v or sin(θ ) = −v . If sin(θ ) = −v , we replace θ by
−θ . In either case, we have found a θ such that z/|z | = cos(θ ) + i sin(θ ). Thus, using Euler’s theorem,
we can write

z = |z | exp(iθ ),

which is called the polar representation of the number z. The “angle” θ is called the argument of
the number z. This is the angle the vector z makes with the x-axis. The choice of θ—as one would
anticipate—is unique only up to an addition by 2nπ by the periodicity of sin and cos.

De�nition 9. Given z , 0, we de�ne

Arg(z) := {θ ∈ R : z = |z | exp(iθ )}.

Note that the capital letter in Arg is intentional and indicates that the object is a set and not a
number. When we use the notation arg(z), we mean an arbitrary �xed choice made from Arg(z).

By considering a unit vector z, we can form the triangle using the x-axis and the vector z and a
line parallel to the y-axis. It is now clear that the new de�nitions of sin and cos are the same as the
classical ones de�ned as the ratios of sides of right-triangles.

The argument satis�es the following properties:

Proposition 10. Let z,w ∈ C \ {0}. Then

1. Arg(zw ) = Arg(z) + Arg(w );
2. Arg(z−1) = −Arg(z);
3. Arg(z/w ) = Arg(z) − Arg(w ).

Remark 11. The algebraic signs appearing in the above proposition have to be interpreted as element-
wise operations. In particular, the ‘−’ sign has nothing to do with set-theoretic complements.

We can now de�ne the general notion of an angle. Given a two complex numbers z,α with α , 0,
we de�ne the ray

L(z,α ) := {z + tα : t ≥ 0}.

It is easy to see that if L(z1,α1) = L(z2,α2) i� z1 = z2 and Arg(α1) = Arg(α2). We de�ne the angle

(L(z,α1),L(z,α2)) = Arg(α2/α1).

Remark 12. Note that the notion of angle we have de�ned is an oriented angle. Speci�cally, (L(z,α1),L(z,α2)) =
−(L(z,α2),L(z,α1)).
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5 The complex logarithm

5 The complex logarithm

De�nition 13. For z ∈ C \ {0}, we de�ne

Log(z) := {w ∈ C : exp(w ) = z}.

Remark 14. The logarithm is not de�ned for z = 0 for obvious reasons: the above set will be empty.
Also keep in mind that, as per our notational convention, the complex logarithm is not a function but
a set.

Proposition 15. Let z = r exp(iθ ). Then

Log z := {x + iy : logx = r ,y ∈ Arg(z)}.

Proof. If w = x + iy then exp(w ) = exp(x ) exp(iy) from which the proposition follows immediately.
�

6 Roots of unity

Let us determine the n-th roots of unity for 0 < n ∈ N. If wn = 1, then w = exp(iθ ) where

θ ∈

{
2kπ
n

: k ∈ Z
}
.

The above set is an in�nite set. However, the set of distinct values of w that arise from the set corre-
spond to k = 0, 1, . . . ,n − 1. The quantity ω := exp(2π/n) generates all such values: the n-th roots
of unity are precisely 1,ω,ω2, . . . ,ωn−1. All the basic properties about the n-th roots can be easily
proved. The n-th roots of an arbitrary complex number can also be easily computed.

We have already de�ned π using the sin function. We relate this to the circumference of the circle.
Observe that the n-th roots of unity form a regular polygon. The circumference of this polygon is
clearly

Ln = n |1 − ω | = n |1 − (cos(2π/n) + i sin(2π/n)) |.

A strightforward computation now gives

|1 − ω |2 = 2(1 − cos(2π/n)) = 4 sin2 (π/n).

This shows that Ln = 2n sin(π/n). Recall that if 0 < x < 2, we have

| sin(x ) − x | < x3/4.

Setting x = π/n, we see that
|Ln − 2π | < π 3/2n3.

This shows that as n → ∞, Ln → 2π .
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