
Holomorphic Functions and Power Series

Having studied the basic properties of the complex �eld, we now study functions of a complex
variable. We de�ne what it means for a complex-valued function de�ned on a domain in the com-
plex plane to be complex-di�erentiable. We then study the relationship between this new notion of
di�erentiability and the already familiar notion of real-di�erentiability. Functions that are complex-
di�erentiable at every point in a domain are called holomorphic functions. For various reasons, which
we shall study in great detail, a function being holomorphic is far more restrictive than the function
being real-di�erentiable.

The focal point of this chapter will be power series and functions that have local power series
expansions, i.e., analytic functions. The reason for this is two-fold:

1. The most important functions that arise in practice are analytic.
2. All holomorphic functions are analytic!

The second point above will be one of the central theorems we will prove in this course. We end
this chapter with a brief exposition of the exponential and trigonometric functions.
Notation: Throughout this chapter, U will be a domain in C with a ∈ U and f : U → C. will be a
function.

1 Holomorphic functions

1.1 Definitions and examples

De�nition 1. Let U ⊂ C be open and f : U → C be a map and a ∈ U . We say f is complex-
di�erentiable (C-di�erentiable at a) if

lim
0,z→a

f (z) − f (a)

z − a

exists and in which case we denote the limit by f ′(a) and call it the complex derivative of f at a.
We say that f is holomorphic on U if f is C-di�erentiable at every point of U . A holomorphic

function on C is called an entire function.

Remarks.

1. It is easy to see that if f is C-di�erentiable at a then f is continuous at a.
2. If f and д are C- di�erentiable then so are f ± д, f д and c f , c ∈ C. The proofs of these facts

follows mutatis mutandis from the proof in the real case.
3. If f is C-di�erentiable at a and f ′(a) , 0, then 1

f is C- di�erentiable at a and its derivative at a
is −1

f ′(a)2 .

Examples and non-examples
We will provide several examples and non-examples to facilitate the digestion of the de�nitions of

C-di�erentiability and holomorphicity.
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1 Holomorphic functions

1. The function zn is entire with derivative nzn−1. Combined with fact that sums and products of
C-di�erentiable functions are C-di�erentiable we see that any polynomial in z is entire.

2. Quotients of C-di�erentiable functions are C-di�erentiable wherever they are de�ned.
3. The function f (z) = z is notC-di�erentiable at any point. To see this, observe that the de�nition

gives
f (z0 + h − f (z0))

h
=
h

h

which has di�erent limits as h → 0 along the real and imaginary axes.
4. Consider the function f (z) = |z |2 = z ·z. In real coordinates, we can consider at as the function

(x ,y) 7→ x2 + y2. This is polynomial function in x ,y and hence C∞-smooth. Again computing
as before, we see that the di�erence quotient if of the form a + ah/h + h. As h 7→ 0, the above
di�erence quotient has a limit i� a = 0. Hence |z |2 is C-di�erentiable only at the point 0.

The last two examples show that f being C-di�erentiable at a point a is a severe restriction. The
limit of the di�erence quotient must exist and agree on all possible approaches to the point a. We
could approach a along any line, or even complicated curves like spirals and the limiting value must
exist and agree on any such approach. This is the crucial di�erence between real-di�erentiability of a
function de�ned on an interval and C-di�erentiability. We will now explore this connection in some
detail.

1.2 Relationship between the complex derivative and the real derivative

Let f be C-di�erentiable at a. Let R (h) (remainder) be the function de�ned as follows:

R (h) =



f (a+h)−f (a)
h − f ′(a) if h , 0

0 if h = 0
.

Observe that R is well-de�ned forh su�ciently close to 0 and that R is continuous. The de�nition of
C-di�erentiability can now be restated as follows: f is C-di�erentiable at a i� we can �nd a complex
number α and a continuous function R : D → C, where D ⊂ C is a suitably small neighborhood of 0
such that R (0) = 0 and

f (a + h) = f (a) + αh + R (h)h.

Recall that f is R-di�erentiable at a if we can �nd a linear transformation d fa : R2 → R2 such that:

lim
h→0

‖ f (a + h) − f (a) − d fah‖

‖h‖
→ 0.

If f is C-di�erentiable at a then clearly f is R-di�erentiable at a with the role of d fa played the
C-linear (and hence R-linear map) h 7→ f ′(a)h. Furthermore, if f is R-di�erentiable at a and the
derivative d fa is C-linear then from our discussion in the previous chapter, it follows that d fa is of
the form h 7→ αh for some complex number α ∈ C. Hence, f is C-di�erentiable at a.

1.3 The Cauchy–Riemann equations

Let U , f ,a be as before and write z as x + iy,x ,y ∈ R and f = u + iv where u and v are real-
valued. Assume that a, the partial derivatives ux ,uy ,vx ,vy exist. We de�ne the Wirtinger derivatives
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2 Power series

as follows:

∂ f

∂z
(a) :=

1
2

(
∂ f

∂x
− i
∂ f

∂y

)
(a)

∂ f

∂z
(a) :=

1
2

(
∂ f

∂x
+ i
∂ f

∂y

)
(a).

Remark 2. Contrast the de�nition above with the second characterization of an R-linear map given
in the last chapter.

Theorem 3. With notations as above, the following conditions are all equivalent.

1. f is C-di�erentiable at a.
2. f is real-di�erentiable at a and ∂f

∂y (a) = i
∂f
∂x (a).

3. f is real-di�erentiable at a and ∂f
∂z (a) = 0.

4. f is real-di�erentiable at a and ux = vy and uy = −vx .

Proof. Let us see how the map d fa acts on the two elements 1, i ∈ C. Now 1, i are nothing but the
vectors (1, 0) and (0, 1), respectively, in R2. This d fa (1) =

∂f
∂x (a) and d fa (i ) =

∂f
∂y (a). Now, d fa is

C-linear i� d fa (i ) = id fa (1) and this proves the equivalence. �

Remark 4. The above proof is very slick but comes with the risk of deluding you into a false sense of
understanding. Please mull over the proof keeping in mind the discussion on linear mappings in the
last chapter.

2 Power series

Our development of the theory is so far severely de�cient in examples. We remedy this situation with
a dose of power series. We �rst recall some deeper facts about convergent in�nite series.

2.1 Infinite series

We will assume that the reader is su�ciently adept at identifying whether a (complex) series is (abso-
lutely) convergent or not using the standard convergence tests such as the comparison test, root test,
ratio test, etc.

We will now sketch the proof of one-part of a famous theorem of Riemann on the behavior of
absolutely convergent series.

Theorem 5. Let
∑
zn be an absolutely convergent series. Then given any bijection σ : N→ N, the new

series
∑
zσ (n) is convergent and has the same sum as

∑
zn .

Proof. Let sn denote the n-th partial sum of the series
∑
zn and s ′n that of the series

∑
zσ (n) . Let ε > 0.

First choose N0 so large so that
∑∈

n=N0
|zn | < ε and then choose N1 > N0 so that σ ({1, 2, . . . ,N1}) ⊃

{1, 2, . . . ,N0}. Then it is clear that |sn − s ′n | < ε proving that the series
∑
zσ (n) converges to the same

sum as
∑
zn . �

De�nition 6 (Cauchy product). Let
∑
an and

∑
bn be two series. We de�ne the Cauchy product of

the two series to be the new series
∑
ck , where ck =

∑
n+m=k ambn .

3



2 Power series

Theorem 7. If the series
∑
an and

∑
bn are both absolutely convergent then so is their Cauchy product.

Moreover the Cauchy product converges to the product of the sums of the two series.

Proof. Let
∑
|an | = α and

∑
|bn | = β . Then observe that

N∑
k=0
|ck | ≤ ( |a0 | + |a1 | + · · · + |aN |) ( |b0 | + |b1 | + . . . |bN |) ≤ αβ .

This shows that the Cauchy product is absolutely convergent. Now,

������

∑
k

ck −
N∑
n=0

(a0 + a1 + · · · + an ) (b0 + b1 + · · · + bn )
������
≤ α

∞∑
k=N+1

|bk | + β
∞∑

K=N+1
|ak |.

The last term above can be made as small as desired. �

2.2 Power series and radius of convergence

De�nition 8. A formal power series about z0 ∈ C with coe�cients cn ∈ C is a series of the form∑
n∈N

cn (z − z0)
n .

Remark 9. We may substitute di�erent complex numbers in the place of z to convert the above formal
series to an honest one. However, apart from z = z0, it is not at all obvious that such a substitution
leads to a convergent series.

Given a formal power series
∑

n∈N cn (z − z0)
n , let us consider the set of convergence

C := {z ∈ C :
∑
n∈N

cn (z − z0)
n converges}.

Our objective now is to study the geometry of the set C . De�ne

R := sup{R ∈ R+ : ∃MR ∀n ∈ N |an |R
n < MR }.

Theorem 10. Given a formal power series
∑

n∈N cn (z − z0)
n and R as de�ned as above, the series con-

verges absolutely for z ∈ D (z0,R) and diverges whenever |z | > R. Moreover, if f : D (z0,R) is de�ned by
the sum of the series then sequence fk :=

∑k
n=0 cn (z − z0)

n converges uniformly on compact subsets of
D (z0,R) to f .

Proof. If |z | > R then the series cannot converge as the n-th term does not go to 0. On the other hand,
if |z | < r < R we have∑

|cn | |z − z0 |
n =

∑
rn |cn |

(
|z − z0 |

r

)n
≤ Mr

∑ (
|z − z0 |

r

)n
.

By comparison test, the above series converges. By Weierstrass M-test, the assertion regarding uni-
form convergence on compacts follows.

�

Examples.
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2 Power series

1. The geometric series 1 + z + z2 + . . . converges to the function 1
1−z whenever |z | < 1. The

behaviour on the unit circle is very simple in this case. We have divergence at all points since
the n-th term does not go to 0.

As one expects, power series can be di�erentiated term-by-term.

Theorem 11. Let
∑
cn (z − z0)

n be a convergent power series with radius of convergence R > 0 and let
f : D (z0,R) → C be the sum. Then f is holomorphic on D (a,R) and its derivative is given by∑

ncn (z − z0)
n−1.

Proof. First of all, the derived power series has radius of convergence R. To see this, observe that if
n |cn |r

n−1 < Mr then |cn |rn < rMr . showing that R′ ≤ R (R′ is the radius of convergence of the derived
power series). On the other hand, if 0 < r < ρ < R then

n |cn |r
n−1 = n/r |cn |ρ

n
(
r

ρ

)n
≤ n/rMρ (

(
r

ρ

)n
)

But, n
(
r
ρ

)n
is a bounded sequence and therefore we can �nd an upper bound for n |cn |rn−1 showing

that R ≤ R′.
Now, we must show that for each ε > 0 and z ∈ D (z0,R), we have

������

f (z) − f (w )

z −w
−

∑
n

cn (z − z0)
n−1

������
< ε

when w is in a suitably small neighborhood of z. To see this, we employ a standard technique in
analysis: break up the series into the �rst few terms and the tail which we know can be made very
small. To this end, write f (z) = SN (z) + R (z) where SN the partial sum of the power series of f . We
will choose N suitably to force the above required inequality. The di�erence quotient becomes

*
,

SN (z) − SN (w )

z −w
−

N∑
n=0

ncn (z − z0)
n−1+

-
−

∑
n>N

ncn (z − z0)
n−1 +

(
RN (z) − RN (w )

z −w

)
.

Call the three terms I, II and III, respectively. The second term can be made as small as desired (being
the tail of a convergent series) by choosing N to be suitably large. On the other hand, the �rst term
can be made as small as desired by choosing w in a suitably small neighborhood of z. The only term
to worry about is III. We have∑

n>N

cn
(
(z − z0)

n−1 + (z − z0)
n−2 (w − z0) + · · · + (w −w0)

n−1
)

where we expanded out (z − z0)n−1 − (w − z0)n−1 and canceled the z −w in the denominator. We may
choose z and w so that |z − z0 | < r < R and |w − z0 | < R whence the above sum becomes

≤
∑
n>N

ncnρ
n−1

which is the tail of a convergent series and can be made as small as desired by choosing N suitably
large (here it is irrelevant what z and w are as long as both are in D (z0,R)). In conclusion, we �rst
choose N so large that the second and third term become lesser than ε/3 and then we choose a small
enough neighborhood of z so that I also becomes smaller than ε/3. �
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2 Power series

Corollary 12. If f is the limit of a convergent power series
∑
cn (z − z0)

r in D (z0,R) then f is in�nitely
di�erentiable and we have

cn =
f n (z0)

n!
.

Proof. Straightforward. �

Many of the nice properties of holomorphic functions stem from the following deep theorem which
is the central theorem of the course. We �rst need a de�nition.

De�nition 13. Let f : U → C be a function. We say that f is complex-analytic if for each z0 ∈ U ,
we can �nd a power series ∑

cn (z − z0)
n

such that on some disk D (z0, r ) ⊂ U , r > 0, the series converges to f |D (z0,r ) .

Theorem 14. Any holomorphic function is automatically complex-analytic!

We will spend the better part of two chapters developing the theory of contour integration to prove
this result. After that, the rest of the course will be spent on obtaining an endless stream of wonderful
results! To whet you appetite, here is one particularly famous one:

Theorem 15 (Open mapping theorem). Let f : U → C be holomorphic. Then either f is constant or f
is an open map.
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