
The Complex Numbers

In this chapter, we will study the basic properties of the �eld of complex numbers. We will begin
with a brief historic sketch of how the study of complex numbers came to be and then proceed to
develop tools needed to study calculus on the complex plane. We will also give several applications
of complex numbers to solving classical problems from geometry and trigonometry.

1 Arithmetic of the complex plane

1.1 Why complex numbers?

If you recall from your study of Real Analysis, the introduction of the real numbers as the completion
of the �eld of rational numbers is unavoidable if one wants to develop calculus in an adequate man-
ner. The question arises as to why we need to enlarge R further and introduce the �eld C. Complex
numbers were �rst introduced in 1545 by the Italian mathematician Cardano in his Ars magna in con-
nection with quadratic equations and he immediately discards them commenting they were “as subtle
as they are useless”. In fact, complex numbers were often dismissed as “imaginary” or “impossible”
even by prominent mathematicians such as Leibniz. So why study them at all?

Recall from high school mathematics that the solution of the quadratic equation x2 = mx + c is
given by the expression

x =
1
2

(
m ±
√
m2 + 4c

)
. (1.1)

The quantity under the square root is called the discriminant, denotedD. According to most textbooks,
complex numbers were introduced to ensure that quadratic equations always have solutions. This is
not only historically inaccurate but also highly misleading.

Geometrically, solving the quadratic equation x2 =mx +c is same as �nding the points of intersec-
tion of the parabola P given by the equation y = x2 and the line L given by the equation y =mx + c .
Three possibilities can arise,

(i) L and P intersects at two points. This corresponds to (1.1) yielding two real solutions. In this
case D > 0.

(ii) L and P intersects at one point. In this case D = 0.
(iii) L and P do not intersect at all. In this case D < 0.

Thus, when D < 0, the fact that P and L do not intersect is re�ected in the fact that (1.1) are complex
numbers. This shows that there is absolutely no reason to introduce complex numbers in the study of
quadratic equations. Cardano was perfectly justi�ed in dismissing complex numbers as “useless” in
connection to solving quadratic equations. That complex numbers were introduced to solve quadratic
equations is a lie repeated blindly by many ill-informed textbook authors!

The real reason for introducing complex numbers is in connection with solving cubics. We begin
with the �rst theorem of the course.
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1 Arithmetic of the complex plane

Theorem 1 (Cardano). The solution of the cubic equation

x3 = 3px + 2q (1.2)

is given by

x =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3. (1.3)

Any arbitrary cubic x3+ax2+bx +c can be transformed by a linear change of coordinates to an equation
of the form (1.2).

Proof. It is an exercise for you to prove that an arbitrary cubic can indeed be transformed to an
equation of the form (1.2).

To solve (1.2), we �rst set x = u +v . Expanding the LHS of (1.2), we get

u3 +v3 + 3uv (u +v ) = u3 +v3 + 3uvx .

Equating the above equation with the RHS of (1.2), we see that p = uv and that u3 + v3 = 2q.
Eliminating v , we end up with the equation

u3 +
p3

u3
− 2q = 0.

This is a quadratic in u3 whose solutions are given by

u3 = q ±
√
q2 − p3.

By symmetry, v3 has the exact same solutions. As u3 + v3 = 2q, without loss of generality, we can
take as the solutions for u3 and v3 as

u3 = q +
√
q2 − p3

v3 = q −
√
q2 − p3

Thus the required solutions are given by

x =
3

√
q +

√
q2 − p3 +

3

√
q −

√
q2 − p3.

�

Geometrically, solving for the cubic (1.2) is equivalent �nding the intersection of the cubic with the
line L given by the equation y = 3px + 2q. Note that a cubic equation always has at least one real root
(why?). This means that the formula (1.3) must always yield at least one real number. It was Bombelli
who realized that there is something strange about the formula. He considered the cubic x3 = 15x + 4
which has solutions

x =
3√2 + 11i + 3√2 − 11i,

here we are freely using complex notation which I am assuming you are already familiar with. The
above does not seem to be a real number at all. But, Bombelli had a “wild thought”. By guessing, he
realized that x = 4 solves the cubic. So he assumed that 3√2 + 11i is an expression of the type 2 + ui
and 3√2 − 11i is an expression of the form 2 − ui , so that x = 2 + ui + 2 − ui = 4. Of course, for this
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1 Arithmetic of the complex plane

to make sense Bombelli assumed that the ordinary laws of algebra are true for the complex numbers,
i.e.,

a + ib + a′ + ib ′ = (a + a′) + i (b + b ′).

Next to determine u, he needed to evaluate (2+ui )3. To do this, he assumed that multiplication obeys
the following obvious rule

(a + ib) (a′ + ib ′) = (aa′ − bb ′) + i (a′b + ab ′),

where we are using i2 = −1. Expanding out (2 + ui )3 using the above rule we get

−iu3 − 6u2 + 12iu + 8 = 2 + 11i,

which readily yields u = 1. Similarly, (2 − i )3 = 2 − 11i .
Bombelli’s “wild thought” shows that the “useless” complex numbers are unavoidable in the solu-

tion of cubics. However, the study of complex numbers remained a mere curiosity and were consid-
ered mysterious for almost 250 years.

1.2 Notation and terminology

We will identify the set of complex numbers, denoted C, with R2. In this identi�cation, the complex
number a + ib corresponds to the pair (a,b). The point 1 ∈ C corresponds to (1, 0) and the point
i corresponds to (0, 1). Geometrically, a complex number is nothing but a vector in the so called
Argand–Gauss complex plane.

The following picture and table summarizes all the relevant notation and terminology related to
complex numbers.

0

z = x+ iy

x = Re(z)

y = Im(z)
r = |z|

θ = arg(z)

z = x− iy

Figure 1: The complex plane

3



1 Arithmetic of the complex plane

Terminology Meaning Notation
modulus of z length r of the vector z |z |
argument of z angle θ that the vector z makes with the x-axis arg(z)
real part of z x coordinate of the vector z Re(z)

imaginary part of z y coordinate of the vector z Im(z)
real axis the set of real numbers

imaginary number a number that is a real multiple of i
imaginary axis the set of imaginary numbers

complex conjugate of z re�ection of z in the real axis z

Note that for z = x + iy, z = x − iy and

Re(z) =
1
2 (z + z), Im(z) =

1
2i (z − z).

The sum of two complex numbers z and w can be obtained geometrically using the parallelogram
law for addition of vectors.

In order to visualize the product, we need to introduce the polar representation of complex numbers
in terms of r and θ . The modulus of |z | is the distance from the origin to the point (x ,y). Explicitly,
|z | =

√
x2 + y2 =

√
z · z. The modulus satis�es a number of simple and easy to prove inequalities.

������

n∑
i=1

zi

������
≤

n∑
i=1
|zi |,

| |z | − |w | | ≤ |z ±w |,

|z1 · · · zn | ≤ |z1 | · |z2 | · · · |zn |.

The modulus is also related
With the sum and product de�ned as in the previous section, C is a commutative �eld. The inverse

of the number z , 0 is given by z−1 = 1
z =

z
|z |2 .

We now want rigorously de�ne the the argument of z. To do this, we have to introduce trigono-
metric functions. The correct way to do this is to use power series which we shall study in great detail
in the next chapter. For the time being, we will assume that any non-zero complex number can be
written in polar form as z = |z |(exp(iθ ) where θ is the angle that the line joining 0 to z makes with the
x-axis and the function exp is realted to the familiar trigonometric functions by the famous Euler’s
formula:

exp(iθ ) = cos(θ ) + i sin(θ ).

With the polar form in hand, it is easy to see that if z,w then the product has modulus the product
of the moduli of z andw and makes an angle the sum of the angles z andw make with x-axis. We will
make all this precise in Chapter 3.

1.3 The field structure on C

As remarked before, C is a commutative �eld. It is natural to ask if it is ordered.

De�nition 2. Let S be a set. A total ordering on S is a relation ≤ that satis�es

1. Re�exivity: a ≤ a for all a in S .
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2 Linear mappings

2. Antisymmetry: a ≤ b and b ≤ a implies a = b.
3. Transitivity: a ≤ b and b ≤ c implies a ≤ c .
4. Comparability (trichotomy law): For any a,b in S , either a ≤ b or b ≤ a.

If a ≤ b and a , b, we often write a < b.

De�nition 3 (Ordered Field). A �eld K with a total ordering ≤ is said to be an ordered �eld if it
satis�es

• if a ≤ b then a + c ≤ a + c, ∀c ∈ K,
• if 0 ≤ a and 0 ≤ b then 0 ≤ a · b.

Theorem 4. C cannot be given the structure of an ordered �eld.

Proof. Assume to the contrary that ≤ makes C into an ordered �eld. Then either i > 0 or i < 0.
Suppose i > 0. Then i2 = −1 > 0. Adding 1 to both sides, we see that 0 > 1. On the other hand −1 > 0
implies that (−1) (−1) = 1 > 0. This is a contradiction. An analogous argument works for i < 0. �

Another natural question is the following: view C as sitting in R3 as the �rst two coordinates; Can
we give R3 the structure of a commutative �eld so that C is a sub�eld?

Theorem 5. R3 cannot be given the structure of a commutative �eld such that C is a sub�eld.

Proof. R3 is obviously a vector space. Assume also that we have de�ned a multiplication · on R3 that
makes it a commutative �eld that extends C. Denote the basis vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) by
1, i, j, respectively. With this notation, i2 = −1. Let us compute ij. Suppose ij = a +bi +cj, a,b, c ∈ R.
Observe �rst that

−j = (i2)j = i (ij ), j2 = −(ij )2.

So,
−j = ai − b + c (ij ) = ai − b + c (a + bi + cj ).

Equating coe�cients, we see that c2 = −1 which is absurd. �

2 Linear mappings

In this section, we consider a R-linear mapping T : C → C, i.e., T (λ1z1 + λ2z2) = λ1T (z1) +
λ2T (z2), ∀λ1, λ2 ∈ R. Now, C is both a vector space over R of dimension 2 and vector space over
C of dimension 1. It is natural to ask for conditions on an arbitrary map T : C → C that guarantee
that T is C-linear. Two obvious necessary conditions:

1. T is R-linear,
2. T commutes with multiplication by i , i.e., T (iz) = iT (z)∀z ∈ C.

It turns out that these two conditions are su�cient to guarantee C-linearity of T . Suppose T is
R-linear. Then for z = x + iy,T (z) = xT (1)+yT (i ). Writing x = z+z

2 and y = z−z
2i and collecting terms

we see that T (z) = αz + βz, where

α =
T (1) − iT (i )

2

, β =
T (1) + iT (i )

2
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2 Linear mappings

If T is C-linear, then T (z) = zT (1) and therefore T is just multiplication by a scalar. From this, we
see that an R-linear map T is C-linear i� the quantity β above is 0. This happens precisely when
T (i ) = iT (1).

Writing T (1) = (a, c ) and T (i ) = (b,d ), we see that the matrix of T under the standard basis is:(
a b
c d

)
If T (i ) = iT (1) then a = d and c = −b. In matrix form, C-linear maps have a matrix of type(

a b
−b a

)
A straighforward computation reveals that α = 1

2 (a+d − ib+ ic ) and β = 1
2 (a−d + ic + ib). Another

easy computation shows that
detT = ad − bc = |α |2 − |β |2,

which means that T is invertible i� |α | , |β |. In this case, we can explicitly solve for the inverse T −1:

T −1 (w ) =
αw − βw

|α |2 − |β |2
.

Summarizing: there are ways to view a R-linear map T : R2 → R2:

1. Maps that satisfy T (x + iy) = xT (1) + yT (i ). Such a map is C-linear i� T (i ) = iT (1).
2. Maps that are of the form T (z) = αz + βz. Such a map is C-linear i� β = 0.
3. As a matrix of the form (

a b
c d

)
In this representation, the map is C-linear i�(

a b
−b a

)
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