Complex Integration

As we have mentioned in the previous chapter, one of the central results of this course is the fact that holomorphic functions are in fact complex-analytic. To prove this we need to develop the machinery of complex integration. The main result is—just as in the case of real analysis—the link between integration and differentiation. We will prove a version of the fundamental theorem of calculus for complex line integrals.

1 Complex line integrals

Let $f : [a, b] \to \mathbb{C}$ be continuous and let f = u(t) + iv(t). We define

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + i \int_{a}^{b} v(t)dt.$$

Let $\alpha, \beta \in \mathbb{C}$ and let $g : [a, b] \to \mathbb{C}$, then

$$\int_{a}^{b} (\alpha f + \beta g) dt = \alpha \int_{a}^{b} f(t) dt + \beta \int_{a}^{b} g(t) dt.$$

We have the following useful inequality:

$$\left|\int_{a}^{b} f(t)dt\right| \leq \int_{a}^{b} |f(t)|dt$$

To see this, let $\int_{a}^{b} f(t)dt = re^{i\theta}$. Then

$$\left| \int_{a}^{b} f(t) dt \right| = r = e^{-i\theta} \int_{a}^{b} f(t) dt$$
$$= \operatorname{Re} \left[e^{-i\theta} \int_{a}^{b} f(t) dt \right] = \int_{a}^{b} \operatorname{Re} \left[e^{-i\theta} f(t) \right] dt$$
$$\leq \int_{a}^{b} |f(t)| dt.$$

Definition 1. Let $\gamma : [a, b] \to \mathbb{C}$ be a C^1 curve and let $f : \gamma^* \to \mathbb{C}$ be continuous. We define

$$\int_{\gamma} f(z) dz := \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

Note that the above integral is the limit of the complex Riemann sums

$$\sum_i f(z_i)(z_{i+1}-z_i),$$

where the points $z_i := \gamma(t_i)$ are the vertices of a polygonal approximation of γ . Replacing $z_{i+1} - z_i$ by $|z_{i+1} - z_i|$ above, we recover the definition of integration with respect to arc-length

$$\int_{\gamma} f(z) |dz| := \int_{\gamma} f(z) ds.$$

It is clear that $\int_{\gamma} dz = \gamma(b) - \gamma(a)$. Now, let $\Gamma = \gamma \circ \Phi$ where $\Phi : [c, d] \to [a, b]$ is a strictly increasing homeomorphism, i.e., orientation preserving. Then

$$\int_{\Gamma} f(z) dz = \int_{c}^{d} f(\Gamma(u)) \Gamma'(u) du.$$

By chain rule, this is same as

$$\int_c^d f(\gamma \circ \Phi(u)) \gamma'(\Phi(u)) \Phi'(u) du.$$

Setting $t = \Phi(u)$ and applying change of variables, we see that the above is same as

$$\int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{\gamma} f(z)dz.$$

If Φ were orientation reversing then $\int_{V} f(z) dz = -\int_{\Gamma} f(z) dz$.

Now suppose γ is a path. Then, we can write $\gamma = \gamma_1 + \cdots + \gamma_n$ where γ_i 's are all C^1 curves such that the ending point of γ_i coincides with the starting point of γ_{i+1} . Then we define

$$\int_{\gamma} f(z) dz := \sum_{i} \int_{\gamma_{i}} f(z) dz.$$

We have the following extremely useful inequality:

$$\left|\int_{\gamma} f(z)dz\right| \leq \int_{a}^{b} |f(\gamma(t))||\gamma'(t)|dt = \int_{\gamma} |f(z)|dz$$

The use of this inequality is easily seen when f is bounded above by M. Then, we immediately see that

$$\left|\int_{\gamma} f(z) dz\right| \leq ML(\gamma)$$

2 The Fundamental Theorem of Complex Calculus

Definition 2. Let $f : U \to \mathbb{C}$ be continuous. We say that $F : U \to \mathbb{C}$ is a *primitive* or *anti-derivative* of f if $F \in \mathcal{O}(U)$ and $F' \equiv f$.

Theorem 3 (The fundamental theorem of complex calculus I). Let $f : U \to \mathbb{C}$ have a primite F. Let $\gamma : [a, b] \to \mathbb{C}$ be a contour. Then

$$\int_{\gamma} f(z)dz = F(\gamma(b)) - F(\gamma(a)).$$

In particular, if $\gamma(b) = \gamma(a)$ (i.e., γ is a closed contour) then $\int_{Y} f(z)dz = 0$.

Proof. By definition

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} F'(\gamma(t))dt = F(\gamma(b)) = F(\gamma(a)),$$

where we have used the chain rule followed by the fudamental theorem of calculus applied to the real and imaginary parts of the integral. $\hfill \Box$

Another version of the fundamental theorem of calculus says that any continuous function $f : [a, b] \rightarrow \mathbb{R}$ has an anti-derivative. This is *not* true for complex valued functions. In fact, it is not even true that holomorphic functions have a primitive. The existence (or rather the non-existence) of primitives in a domain is intimately tied together with topology of the domain. The following question is the second central question of the course:

Under what conditions on a domain U is it true that any holomorphic function on U has a primitive?

Theorem 4 (Fundamental theorem of complex calculus II). Let $U \subset \mathbb{C}$ be a domain and let $f : U \to \mathbb{C}$ be a continuous function such that $\int_{\gamma} f dz = 0$ for all closed contours $\gamma : [a.b] \to U$. Then f has a primitive.

Proof. Fix $z_0 \in U$. Define

$$F(z):=\int_{\gamma}f(w)dw,$$

where $\gamma : [a, b] \to U$ is any contour with $\gamma(a) = z_0$ and $\gamma(b) = z$. By our hypothesis on f, the above integral is well-defined and does not depend on our choice of contour. To show differentiability of F at z, observe that we can write the difference quotient $\frac{F(z+h)-F(z)}{h}$ as

$$\int_{Y_{z\to z+h}}f(w)dw,$$

where $\gamma_{z \to z+h}$ is the straight line path joinig z_0 and z. If h is a real number, it follows that

$$\int_{Y_{z\to z+h}} f(w)dw - f(z) = \int_{Y_{z\to z+h}} f(z)dz - \frac{1}{h} \int_{Y_{z\to z+h}} f(z)dw$$
$$= \frac{\int_{Y_{z\to z+h}} (f(w) - f(z))dw}{h}.$$

As $h \to 0$, the *ML*-inequality and the continuity of f shows that the above limit goes to 0. We have shown $\frac{\partial F}{\partial x} = f$. Now assume h is real and consider

$$\frac{\partial F}{\partial y} = \frac{F(z+ih) - F(z)}{h}.$$

We get

$$\int_{\gamma_{z \to z+ih}} f(w)dw - if(z) = \int_{\gamma_{z \to z+ih}} f(z)dz - \frac{1}{h} \int_{\gamma_{z \to z+ih}} f(z)dw$$
$$= \frac{\int_{\gamma_{z \to z+ih}} (f(w) - f(z))dw}{h} \to 0.$$

This shows that $\frac{\partial F}{\partial y} = i \frac{\partial F}{\partial y}$ whence *F* is holomorphic and F' = f.

The above version of the fundamental theorem of calculus leads us to reformulate the second central question as follows:

Under what conditions on a domain U is it true that for any holomorphic function on U, the integral over a closed contour is zero?

The second central question will be answered by the general Cauchy theorem to be proved later.

3 The Cauchy-Goursat Theorem

Theorem 5 (Goursat). Let $R = [a, b] \times [c, d]$ be a rectangle in U. Let $f : U \to \mathbb{C}$ be a holomorphic function. Then

$$\int_{\partial R} f(z) dz = 0.$$

Here the ∂R *is traversed anti-clockwise.*

Proof. Assume the integral is non-zero and let *m* be its absolute value. We divide *R* into 4 equal smaller rectangles and we give the boundaries the positive orientation. The integral of *f* on at least one of this smaller rectangles has absolute value $\ge m/4$. Iterating this process, we construct a sequence of rectangles R_n with $R_0 = R$, $R_{n+1} \subset R_n$ and

$$\left|\int_{\partial R_n} f(z) dz\right| \geq \frac{m}{4^m}.$$

The intersection of the R_n 's is a single point a. Take $\varepsilon > 0$. As f is \mathbb{C} -differentiable at a, we can find a neighbourhood V of a in U for which

$$|f(z) - f(a) - (z - a)f'(a)| \le \varepsilon |z - a| \ \forall z \in V.$$

Choose *N* large so that $R_N \subset V$. Then

$$\left|\int_{\partial R_N} (f(z) - f(a) - (z - a)f'(a))dz\right| \leq \varepsilon \left(\frac{\delta}{2^N}\right)^2,$$

where $\delta :=$ the perimeter of *R* and thus $\delta/2^N$ is the perimeter of *R*_N. Now, a simple direct computation shows that

$$\int_{\partial R_N} f(a) + (z-a)f'(a)dz = 0.$$

This shows that

$$\left|\int_{\partial R_N} f(z) dz\right| \leq \varepsilon \frac{\delta^2}{4^n}.$$

If $\varepsilon < \frac{m}{\delta^2}$, then we get a contradiction.

Corollary 6. The Cauchy–Goursat theorem remains true if we assume that f is continuous on U and holomorphic outside a finite subset $S \subset U$.

Proof. Let *M* be an upper bound of |f| on *U*. As in the proof of the Cauchy–Goursat theorem, subdivide *R* into 4^m sub-rectangles each of which is 2^n times smaller than *R*. Each point of *S* can belong to at most 4 sub-rectangles. Thus, by the Cauchy–Goursat theorem, the integral of *f* on all but $4 \times |S|$ sub-rectangles is 0. Hence

$$\left| \int_{\partial R} f(z) dz \right| \le 4 \times |S| M \frac{\delta}{2^n}$$

This integral clearly goes to 0 as $n \to \infty$.

Theorem 7. Any holomorphic function in an open set $U \subset \mathbb{C}$ is automatically analytic in U.

Proof. Let $a \in U$. Let R be a rectangle in U such that $a \in \mathbb{R}$. Let r > 0 be such that $D(a, r) \subset R$ and let $b \in D(a, r)$. Let $g : U \to \mathbb{C}$ be the function defined by

$$g(z) = \begin{cases} \frac{f(z) - f(b)}{z - b} & z \neq b\\ f'(z) & z = 0 \end{cases}$$

Clearly, $g \in \mathscr{O}(U \setminus \{b\}) \cap C(U)$. By the previous corollary $\int_{\partial R} g(z) dz = 0$. Hence

$$\int_{\partial R} \frac{f(z)}{z-b} dz - f(b) 2\pi i = 0,$$

and thus

$$f(b) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z - b} dz.$$

For any $z \in \partial R$, $\frac{|b-a|}{|z-a|} \le \frac{|b-a|}{r} < 1$. Thus

$$\sum_{n=0}^{\infty} \frac{(b-a)^n}{(z-a)^{n+1}} = \frac{1}{z-a} \cdot \frac{1}{1-\frac{b-a}{z-a}} = \frac{1}{z-b},$$

and this convergence is uniform for $z \in R$. Thus

$$f(b) = \frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z - b} = \sum_{n=0}^{\infty} (b - a)^n \int_{\partial P} \frac{f(z)}{(z - a)^{n+1}} \frac{dz}{2\pi i}$$

This proves that f can be expanded in a power series near a proving that f is analytic.

3.1 Morera's theorem

Theorem 8. Let $f : U \to \mathbb{C}$ be a continuous function such that for each rectangle $R \subset U$, we have $\int_{\partial B} f(z) dz = 0$. Then f is analytic on U.

Proof. There is no harm in assuming that U is an open disk centred at a. For each $z \in U$, let F(z) be the integral of f along a path from a to z composed of a horizontal segment followed by a vertical segment. By hypothesis, F(z) can also be obtained by integrating f along the path that first consists of a vertical segment and then a horizontal segment. The proof that F is a primitive of f now follows along the same as lines as the proof the second form of the fundamental theorem of calculus and is left to the reader.

3.2 Cauchy's integral formula for disk and applications

Theorem 9. Let $f : U \to \mathbb{C}$ be holomorphic and $\overline{D}(a, r) \subset U$. For $b \in D(a, r)$, we have

$$f(b) = \int_{C(a,r)} \frac{f(z)}{z-b} \frac{dz}{2\pi i},$$

where $C(a, r) = \partial D(a, r)$ with positive orientation. More generally,

$$\frac{f^{(n)}(b)}{n!} = \int_{C(a,r)} \frac{f(z)}{(z-b)^{n+1}} \frac{dz}{2\pi i}$$

Furthermore, the Taylor series expansion of f around a converges unifomly on compact subsets of D(a, r) to f.

Proof. The proof is exactly same as that for the rectangle.

4 The principle of analytic continuation

We will now study some of the aspects of holomorphic functions that arise out of complex-analyticity. One main distinguishing feature of analytic functions as opposed to C^{∞} functions is that analytic functions are more rigid. This is made precise in this section. We first define the order of a holomorphic function at a point.

Lemma 10. Let $U \subset \mathbb{C}$ be a domain, $a \in U$ and let $f \in \mathcal{O}(U)$. Then the following conditions are all equivalent:

f⁽ⁿ⁾(a) = 0 ∀n.
f(z) = 0 in a neighborhood of a.
f ≡ 0 on U.

Proof. Obviously $(c) \implies (b), (b) \implies a$. It suffices to prove that $(a) \implies (c)$. To do this we use a connectedness argument. Let

 $A := \{z \in U : f(z) = 0 \text{ in some neighborhood of } z\}.$

Clearly, *A* is an open set. Let $z_m \in A$ be such that $z_m \to z \in U$. Then $f^{(n)}(z_m) = 0$ by the definition of *A* and consequently by passing to limits, $f^{(n)}(z) = 0$. But this means that the Taylor expansion of *f* centered at 0 has all coefficients 0 and this means that *f* vanishes on some disk around *z* and hence $z \in A$. This proves that *A* is closed in *U* and consequently A = U proving that $(a) \implies (c)$. \Box

Definition 11. A *discrete* subset $E \subset U$ is a closed subset of U such that each point of E is an isolated point.

Theorem 12 (The principle of analytic continuation). If $f \in \mathcal{O}(U)$ then either the zeros set of f

$$Z(f) := \{ z \in U : f(z) = 0 \}$$

is discrete or f is constant.

Proof. The set Z(f) is clearly closed in U. Let $a \in Z(f)$. Assume that f is non-constant. Then, by the previous lemma, the Taylor series of f around a is of the following form:

$$f(z) = \sum_{n=k}^{\infty} c_n (z-a)^n,$$

where k > 0 and $c_k \neq 0$. It is straightforward to see that the power series $\sum_{n=0}^{\infty} c_{n+k}(z-a)^n$ converges in a disk around 0. Moreover, as $c_k \neq 0$, it follows that the function g defined by this series is nowhere zero in a small disk around a. As $f(z) = (z-a)^k g(z)$ in a small disk around a, it follows that a is an isolated point of Z(f).

5 The maximum principle and open mapping theorem

Recall that the Laplacian $\triangle u := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ for $u \in C^2(U)$.

Lemma 13. If $u : U \to \mathbb{R}$ is C^2 -smooth. Suppose $\Delta u \ge 0$ on U. Let $G \subseteq U$ be a open (not necessarily connected) set. Then

$$\sup_{w\in G} u(w) \leq \sup_{w\in\partial G} u(w).$$

Remark 14. The notation $G \subseteq U$ (read G is relatively compact in U) means that $\overline{G} \subset U$ and \overline{G} is compact. Here the closure is taken in \mathbb{C} .

Proof. First assume that $\Delta u > 0$ on \overline{G} . The if $z_0 \in G$ such that z_0 is a point of maximum for u in \overline{G} . Then

$$\Delta u(z_0) \leq 0,$$

which is not possible. The lemma is prove with the additional hypothesis that $\Delta u > 0$ on \overline{G} . If not, consider the function

$$\Delta u_{\varepsilon} := u + \varepsilon |z|^2.$$

Then $\triangle u_{\varepsilon} > \varepsilon$ and therefore from the previous argument

$$\sup_{w\in G} u_{\varepsilon}(w) \leq \sup_{w\in \partial G} u_{\varepsilon}(w).$$

The lemma follows by letting $\varepsilon \to 0$.

Theorem 15 (Maximum principle weak form). Let $f : U \to \mathbb{C}$ is holomorphic and $G \subseteq U$. Then

$$\sup_{w\in G} |f(w)| \le \sup_{w\in\partial G} |f(w)|.$$

Proof. Just compute $\triangle |f|^2$.

Theorem 16 (The open mapping theorem). Let $f \in \mathcal{O}(U)$. Then either f is a constant or else it is an open map.

Proof. Let $a \in U$. We may assume that f(a) = 0 and show that for small enough r > 0 that f(D(a, r)) has 0 as an interior point unless f is constant. If f is non-constant, then for some small disk D(a, r) we have $f \neq 0$ on $D^*(a, r)$ (by principle of analytic continuation). Let δ be the minimum value of |f| on the circle of radius r centered at a. Suppose $w \notin f(\overline{D(a, r)})$, then we claim that $|w| \ge 1/2\delta$. We may assume that $|w| < \delta$. Then the function

$$g(z) = \frac{1}{f(z) - w}$$

is holomorphic on D(a, r) and satisfies

$$\frac{1}{|w|} = |g(a)| \le \sup z \in \partial D(a, r)|g(z)| \le \frac{1}{\delta - |w|}$$

This means that $|w| \ge 1/2\delta$ as claimed and we are done.

Theorem 17 (The maximum principle strong form). Let $f \in \mathcal{O}(U)$ where U is a bounded domain. Let

$$M := \{\limsup_{z \to \zeta} |f(z)| : \zeta \in \partial U\}$$

Then either f is constant or |f| < M.

Proof. We may assme that f is an open map. It suffices to show that $|f| \le M + \varepsilon$ for each $\varepsilon > 0$. This would show that $|f| \le M$ and we get the desired inequality that |f| < M because f is an open map. For each $\zeta \in \partial U$, using the definition of M, we can find a disk D_{ζ} such that $|f| < M + \varepsilon$ on $D_{\zeta} \cap U$. Call the union of these disks D. Then clearly $K := U \setminus D$ is a compact set. Let $G \subset U$ be an open set with $K \subset G$. Then $\partial G \subset D \cap U$. The maximum principle gives us that $|f| \le M + \varepsilon$ on G and hence on U. The result follows.