Complex Integration

As we have mentioned in the previous chapter, one of the central results of this course is the fact that
holomorphic functions are in fact complex-analytic. To prove this we need to develop the machinery
of complex integration. The main result is—just as in the case of real analysis—the link between
integration and differentiation. We will prove a version of the fundamental theorem of calculus for
complex line integrals.

1 Complex line integrals

Let f : [a,b] — C be continuous and let f = u(t) + iv(t). We define

fabf(t)dtz fabu(t)dt+ifab v(t)dt.

Leta,f € Candletg: [a,b] — C, then

b b b
f (af + Bg)dt = a f F()dt + B f g(t)dt.

We have the following useful inequality:

fabf(t)dt

To see this, let fab f(t)dt = re'?. Then
b b
f f(ydt|=r=e f f(t)dt
b b
= Re [w‘e f f(t)dt] = f Re [e /(1)) dt

b
< f F(0)ldr.

Definition 1. Let y : [a,b] — Cbe a C! curve and let f : y* — C be continuous. We define

b
< f F(0)ldt.

b
[ r@dz= [ oy wa.
Y a
Note that the above integral is the limit of the complex Riemann sums

Zf(li)(lm - zi),
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where the points z; := y(t;) are the vertices of a polygonal approximation of y. Replacing z;,; — z; by
|z;+1 — z;| above, we recover the definition of integration with respect to arc-length

fyf 2)dz fyf z)ds
It is clear that fy dz =y(b) —y(a).

Now, letT' = yo® where @ : [¢,d] — [a, b] is a strictly increasing homeomorphism, i.e., orientation

preserving. Then
d
f F@)dz = f FT@)T (w)du
T c

d
f f(y o @)y’ (®(w)®’ (u)du.

By chain rule, this is same as

Setting t = ®(u) and applying change of variables, we see that the above is same as

b
)y’ (t)dt = d
fa F®Y @) fy @)z

If ® were orientation reversing then fy f(z)dz = - fr f(z)dz.

Now suppose Y is a path. Then, we can write y = y; + - - + y, where y;’s are all C! curves such
that the ending point of y; coincides with the starting point of y;,;. Then we define

ff Jdz = ) fz)dz

1

We have the following extremely useful inequality:

b
dz| < | NIy’ @) |dt = | |dz.
fy F)dz f FO @y ©) fy f(2)ldz

The use of this inequality is easily seen when f is bounded above by M. Then, we immediately see
that
f f(z)dz
Y
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< ML(y)

Definition 2. Let f : U — C be continuous. We say that F : U — C is a primitive or anti-derivative
of fif Fe O(U)and F' = f.

Theorem 3 (The fundamental theorem of complex calculus I). Let f : U — C have a primite F. Let
: [a,b] — C be a contour. Then

f F()dz = F(y (b)) - F(y(a)).

In particular, if y(b) = y(a) (i.e, y is a closed contour) then fy f(z)dz = 0.
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Proof. By definition
b b
ffww=j‘ﬂﬂmwmm=j mﬂmm=Hﬂm=mex
Y a a

where we have used the chain rule followed by the fudamental theorem of calculus applied to the real
and imaginary parts of the integral. O

Another version of the fundamental theorem of calculus says that any continuous function f :
[a,b] — R has an anti-derivative. This is not true for complex valued functions. In fact, it is not
even true that holomorphic functions have a primitive. The existence (or rather the non-existence)
of primitives in a domain is intimately tied together with topology of the domain. The following
question is the second central question of the course:

Under what conditions on a domain U is it true that any holomorphic function on U has a primitive?

Theorem 4 (Fundamental theorem of complex calculusIl). LetU c C be a domain andlet f : U — C
be a continuous function such that fy fdz = 0 for all closed contours y : [a.b] — U. Then f has a
primitive.

Proof. Fix zy € U. Define
F(z) := ff(w)dw,
Y

where y : [a,b] — U is any contour with y(a) = z; and y(b) = z. By our hypothesis on f, the above

integral is well-defined and does not depend on our choice of contour. To show differentiability of F

at z, observe that we can write the difference quotient w as

ﬁ fw)dw,

z—z+h

where y,_,,.p, is the straight line path joinig z and z. If h is a real number, it follows that

[ seav-ra= [ jei-1 [ e

Yz—z+h Yz—z+h Yz—z+h
[ (Fw) = f@)dw
= z )
As h — 0, the ML-inequality and the continuity of f shows that the above limit goes to 0. We have
shown % = f. Now assume h is real and consider
OF _ F(z+ih) - F(z)
dy h ’
We get
1
[ sww-@= [ ree- [ e
Yz—z+ih Yz—z+ih Yz—z+ih
Sy (F(w) = f(2))dw
— z—oz+1 H 0‘
h
This shows that g—’; = ig—g whence F is holomorphic and F’ = f.
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The above version of the fundamental theorem of calculus leads us to reformulate the second central
question as follows:

Under what conditions on a domain U is it true that for any holomorphic function on U, the integral
over a closed contour is zero?

The second central question will be answered by the general Cauchy theorem to be proved later.

3 The Cauchy-Goursat Theorem

Theorem 5 (Goursat). Let R = [a,b] X [c,d] be a rectangle in U. Let f : U — C be a holomorphic
function. Then

f(z)dz = 0.
OR

Here the OR is traversed anti-clockwise.

Proof. Assume the integral is non-zero and let m be its absolute value. We divide R into 4 equal smaller
rectangles and we give the boundaries the positive orientation. The integral of f on at least one of
this smaller rectangles has absolute value > m/4. Iterating this process, we construct a sequence of
rectangles R,, with Ry = R, R,41 C R, and

m
> —

f@dz 2 .

OR,

The intersection of the R,,’s is a single point a. Take € > 0. As f is C-differentiable at a, we can find
a neighbourhood V of a in U for which

If(z) = f(a) —(z—a)f'(a)| < ¢elz—a|Vz € V.

Choose N large so that Ry ¢ V. Then
5 \2
<[]

where § := the perimeter of R and thus §/2" is the perimeter of Ryy. Now, a simple direct computation
shows that

f (F(2) - f(a) - (z - @) f'(@))dz
ORN

f(a) + (z—a)f'(a)dz = 0.

ORN
This shows that )
f(z)dz| < e—.
faRN 4"
If e < £, then we get a contradiction. O

Corollary 6. The Cauchy—Goursat theorem remains true if we assume that f is continuous on U and
holomorphic outside a finite subset S C U.
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Proof. Let M be an upper bound of |f| on U. As in the proof of the Cauchy—-Goursat theorem, subdi-
vide R into 4™ sub-rectangles each of which is 2" times smaller than R. Each point of S can belong to
at most 4 sub-rectangles. Thus, by the Cauchy-Goursat theorem, the integral of f on all but 4 X |S]

sub-rectangles is 0. Hence
IRCZ
OR

This integral clearly goes to 0 as n — oo. O

1)
<4 X |SIM—.
2n

Theorem 7. Any holomorphic function in an open set U C C is automatically analytic in U.

Proof. Let a € U. Let R be a rectangle in U such that a € R. Let r > 0 be such that D(a,r) C R and let
b € D(a,r). Let g : U — C be the function defined by

NACI AL
e z#Db
g(z) =4 =7
f'(z) z=0.
Clearly, g € O(U \ {b}) N C(U). By the previous corollary faR g(z)dz = 0. Hence
f(2) )z~ f(oyer
OR %~
and thus .
oy =— [ L9

2mi Jarz—b

For any z € dR, 1224 < ”’ 4 < 1. Thus

> Tz—al al
i b-a" 1 11
—_ntl L —g b-a  L_}’
n:o(z a)” z-—a 1-bk=2 2 b

and this convergence is uniform for z € R. Thus

1 f(z flz) dz
Fb) = 27i Z(b j;p (z—a)™1 27i’

This proves that f can be expanded in a power series near a proving that f is analytic. O

3.1 Morera’s theorem

Theorem 8. Let f : U — C be a continuous function such that for each rectangle R C U, we have
faR f(z)dz = 0. Then f is analytic on U.

Proof. There is no harm in assuming that U is an open disk centred at a. For each z € U, let F(z) be
the integral of f along a path from a to z composed of a horizontal segment followed by a vertical
segment. By hypothesis, F(z) can also be obtained by integrating f along the path that first consists
of a vertical segment and then a horizontal segment. The proof that F is a primitive of f now follows
along the same as lines as the proof the second form of the fundamental theorem of calculus and is
left to the reader. O
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3.2 Cauchy’s integral formula for disk and applications

Theorem 9. Let f : U — C be holomorphic and D(a,r) C U. Forb € D(a,r), we have

_ fz) dz
J) = j;(a,,) z—b2mi’

where C(a,r) = dD(a, r) with positive orientation. More generally,

F70) [ Ao
C(a,r) (

n! z- b)”“z_m'

Furthermore, the Taylor series expansion of f around a converges unifomly on compact subsets of D(a, r)

to f.

Proof. The proof is exactly same as that for the rectangle. O

4 The principle of analytic continuation

We will now study some of the aspects of holomorphic functions that arise out of complex-analyticity.
One main distinguishing feature of analytic functions as opposed to C* functions is that analytic func-
tions are more rigid. This is made precise in this section. We first define the order of a holomorphic
function at a point.

Lemma 10. Let U C C be a domain, a € U and let f{ € O(U). Then the following conditions are all
equivalent:

1. f"™(a) = 0Vn.
2. f(z) = 0 in a neighborhood of a.
3 f=0onU.

Proof. Obviously (¢) = (b),(b) = a. It suffices to prove that (a) = (c). To do this we use a
connectedness argument. Let

A:={zeU: f(z) = 0 in some neighborhood of z}.

Clearly, A is an open set. Let z,, € A be such that z,, — z € U. Then f™(z,,) = 0 by the definition
of A and consequently by passing to limits, f(™)(z) = 0. But this means that the Taylor expansion of
f centered at 0 has all coefficients 0 and this means that f vanishes on some disk around z and hence
z € A. This proves that A is closed in U and consequently A = U proving that (a) = (c). O

Definition 11. A discrete subset E C U is a closed subset of U such that each point of E is an isolated
point.

Theorem 12 (The principle of analytic continuation). If f € &'(U) then either the zeros set of f
Z(f)={z€U: f(z) =0}

is discrete or f is constant.
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Proof. The set Z(f) is clearly closed in U. Let a € Z(f). Assume that f is non-constant. Then, by the
previous lemma, the Taylor series of f around a is of the following form:

[ee)

f@) =) enlz=a)",

n=k

where k > 0 and ¢, # 0. It is straightforward to see that the power series ), ¢,k (z—a)" converges
in a disk around 0. Moreover, as cx # 0, it follows that the function g defined by this series is nowhere
zero in a small disk around a. As f(z) = (z — a)*g(z) in a small disk around a, it follows that a is an
isolated point of Z(f). O

5 The maximum principle and open mapping theorem
Recall that the Laplacian Au := % + giy’; for u € C*(U).

Lemma 13. Ifu : U — R is C*-smooth. Suppose Au > 0 on U. Let G € U be a open (not necessarily
connected) set. Then

sup u(w) < sup u(w).
weG wedG

Remark 14. The notation G € U (read G is relatively compact in U) means that G ¢ U and G is
compact. Here the closure is taken in C.

Proof. First assume that Au > 0 on G. The if zy € G such that z, is a point of maximum for u in G.
Then
Au(zg) <0,

which is not possible. The lemma is prove with the additional hypothesis that Au > 0 on G. If not,
consider the function
Aug = u + €|z|%.

Then Au, > ¢ and therefore from the previous argument

sup us(w) < sup ug(w).
weG wedG

The lemma follows by letting ¢ — 0. O

Theorem 15 (Maximum principle weak form). Let f : U — C is holomorphic and G € U. Then

sup [f(w)] < sup |f(w)l.

weG weoG
Proof. Just compute A|f|2. i

Theorem 16 (The open mapping theorem). Let f € & (U). Then either f is a constant or else it is an
open map.
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Proof. Let a € U. We may assume that f(a) = 0 and show that for small enough r > 0 that f(D(a,r))
has 0 as an interior point unless f is constant. If f is non-constant, then for some small disk D(a, r)
we have f # 0 on D*(a,r) (by principle of analytic continuation). Let § be the minimum value of | f|

on the circle of radius r centered at a. Suppose w ¢ f(D(a,r)), then we claim that |w| > 1/25. We
may assume that [w| < §. Then the function

1
()=
IO
is holomorphic on D(a, r) and satisfies

1
—_ = < D < .
] = 19(@)| < supz € 6D(a.n)lg(@) < s

This means that |w| > 1/26 as claimed and we are done. O

Theorem 17 (The maximum principle strong form). Let f € &(U) where U is a bounded domain. Let

M = {limsup |f(2)| : { € OU}.

z—(
Then either f is constant or | f| < M.

Proof. We may assme that f is an open map. It suffices to show that | f| < M + ¢ for each ¢ > 0. This
would show that | f| < M and we get the desired inequality that |f| < M because f is an open map.
For each { € dU, using the definition of M, we can find a disk D; such that |f| < M + ¢ on Dy N U.
Call the union of these disks D. Then clearly K := U \ D is a compact set. Let G C U be an open set
with K € G. Then 0G € DN U. The maximum principle gives us that | f| < M + ¢ on G and hence on
U. The result follows. O



