
Complex Integration

As we have mentioned in the previous chapter, one of the central results of this course is the fact that
holomorphic functions are in fact complex-analytic. To prove this we need to develop the machinery
of complex integration. The main result is—just as in the case of real analysis—the link between
integration and di�erentiation. We will prove a version of the fundamental theorem of calculus for
complex line integrals.

1 Complex line integrals

Let f : [a,b]→ C be continuous and let f = u (t ) + iv (t ). We de�ne∫ b

a
f (t )dt =

∫ b

a
u (t )dt + i

∫ b

a
v (t )dt .

Let α , β ∈ C and let д : [a,b]→ C, then∫ b

a
(α f + βд)dt = α

∫ b

a
f (t )dt + β

∫ b

a
д(t )dt .

We have the following useful inequality:

�����

∫ b

a
f (t )dt

�����
≤

∫ b

a
| f (t ) |dt .

To see this, let
∫ b
a f (t )dt = reiθ . Then

�����

∫ b

a
f (t )dt

�����
= r = e−iθ

∫ b

a
f (t )dt

= Re
[
e−iθ

∫ b

a
f (t )dt

]
=

∫ b

a
Re

[
e−iθ f (t )

]
dt

≤

∫ b

a
| f (t ) |dt .

De�nition 1. Let γ : [a,b]→ C be a C1 curve and let f : γ ∗ → C be continuous. We de�ne∫
γ
f (z)dz :=

∫ b

a
f (γ (t ))γ ′(t )dt .

Note that the above integral is the limit of the complex Riemann sums∑
i

f (zi ) (zi+1 − zi ),
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2 The Fundamental Theorem of Complex Calculus

where the points zi := γ (ti ) are the vertices of a polygonal approximation of γ . Replacing zi+1 −zi by
|zi+1 − zi | above, we recover the de�nition of integration with respect to arc-length∫

γ
f (z) |dz | :=

∫
γ
f (z)ds .

It is clear that
∫
γ dz = γ (b) − γ (a).

Now, let Γ = γ ◦Φ where Φ : [c,d]→ [a,b] is a strictly increasing homeomorphism, i.e., orientation
preserving. Then ∫

Γ
f (z)dz =

∫ d

c
f (Γ(u))Γ′(u)du .

By chain rule, this is same as ∫ d

c
f (γ ◦ Φ(u))γ ′(Φ(u))Φ′(u)du .

Setting t = Φ(u) and applying change of variables, we see that the above is same as∫ b

a
f (γ (t ))γ ′(t )dt =

∫
γ
f (z)dz.

If Φ were orientation reversing then
∫
γ f (z)dz = −

∫
Γ
f (z)dz.

Now suppose γ is a path. Then, we can write γ = γ1 + · · · + γn where γi ’s are all C1 curves such
that the ending point of γi coincides with the starting point of γi+1. Then we de�ne∫

γ
f (z)dz :=

∑
i

∫
γi
f (z)dz.

We have the following extremely useful inequality:

�����

∫
γ
f (z)dz

�����
≤

∫ b

a
| f (γ (t )) | |γ ′(t ) |dt =

∫
γ
| f (z) |dz.

The use of this inequality is easily seen when f is bounded above by M . Then, we immediately see
that �����

∫
γ
f (z)dz

�����
≤ ML(γ )

2 The Fundamental Theorem of Complex Calculus

De�nition 2. Let f : U → C be continuous. We say that F : U → C is a primitive or anti-derivative
of f if F ∈ O (U ) and F ′ ≡ f .

Theorem 3 (The fundamental theorem of complex calculus I). Let f : U → C have a primite F . Let
γ : [a,b]→ C be a contour. Then ∫

γ
f (z)dz = F (γ (b)) − F (γ (a)).

In particular, if γ (b) = γ (a) (i.e., γ is a closed contour) then
∫
γ f (z)dz = 0.
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2 The Fundamental Theorem of Complex Calculus

Proof. By de�nition∫
γ
f (z)dz =

∫ b

a
f (γ (t ))γ ′(t )dt =

∫ b

a
F ′(γ (t ))dt = F (γ (b)) = F (γ (a)),

where we have used the chain rule followed by the fudamental theorem of calculus applied to the real
and imaginary parts of the integral. �

Another version of the fundamental theorem of calculus says that any continuous function f :
[a,b] → R has an anti-derivative. This is not true for complex valued functions. In fact, it is not
even true that holomorphic functions have a primitive. The existence (or rather the non-existence)
of primitives in a domain is intimately tied together with topology of the domain. The following
question is the second central question of the course:

Under what conditions on a domainU is it true that any holomorphic function onU has a primitive?

Theorem 4 (Fundamental theorem of complex calculus II). LetU ⊂ C be a domain and let f : U → C
be a continuous function such that

∫
γ f dz = 0 for all closed contours γ : [a.b] → U . Then f has a

primitive.

Proof. Fix z0 ∈ U . De�ne

F (z) :=
∫
γ
f (w )dw,

where γ : [a,b] → U is any contour with γ (a) = z0 and γ (b) = z. By our hypothesis on f , the above
integral is well-de�ned and does not depend on our choice of contour. To show di�erentiability of F
at z, observe that we can write the di�erence quotient F (z+h)−F (z )

h as∫
γz→z+h

f (w )dw,

where γz→z+h is the straight line path joinig z0 and z. If h is a real number, it follows that∫
γz→z+h

f (w )dw − f (z) =

∫
γz→z+h

f (z)dz −
1
h

∫
γz→z+h

f (z)dw

=

∫
γz→z+h

( f (w ) − f (z))dw

h
.

As h → 0, the ML-inequality and the continuity of f shows that the above limit goes to 0. We have
shown ∂F

∂x = f . Now assume h is real and consider

∂F

∂y
=

F (z + ih) − F (z)

h
.

We get ∫
γz→z+ih

f (w )dw − i f (z) =

∫
γz→z+ih

f (z)dz −
1
h

∫
γz→z+ih

f (z)dw

=

∫
γz→z+ih

( f (w ) − f (z))dw

h
→ 0.

This shows that ∂F
∂y = i

∂F
∂y whence F is holomorphic and F ′ = f .

�
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3 The Cauchy–Goursat Theorem

The above version of the fundamental theorem of calculus leads us to reformulate the second central
question as follows:

Under what conditions on a domainU is it true that for any holomorphic function onU , the integral
over a closed contour is zero?

The second central question will be answered by the general Cauchy theorem to be proved later.

3 The Cauchy–Goursat Theorem

Theorem 5 (Goursat). Let R = [a,b] × [c,d] be a rectangle in U . Let f : U → C be a holomorphic
function. Then ∫

∂R
f (z)dz = 0.

Here the ∂R is traversed anti-clockwise.

Proof. Assume the integral is non-zero and letm be its absolute value. We divideR into 4 equal smaller
rectangles and we give the boundaries the positive orientation. The integral of f on at least one of
this smaller rectangles has absolute value ≥ m/4. Iterating this process, we construct a sequence of
rectangles Rn with R0 = R,Rn+1 ⊂ Rn and

�����

∫
∂Rn

f (z)dz
�����
≥

m

4m
.

The intersection of the Rn ’s is a single point a. Take ε > 0. As f is C-di�erentiable at a, we can �nd
a neighbourhood V of a in U for which

| f (z) − f (a) − (z − a) f ′(a) | ≤ ε |z − a | ∀z ∈ V .

Choose N large so that RN ⊂ V . Then

�����

∫
∂RN

( f (z) − f (a) − (z − a) f ′(a))dz
�����
≤ ε

(
δ

2N

)2
,

where δ := the perimeter of R and thus δ/2N is the perimeter of RN . Now, a simple direct computation
shows that ∫

∂RN
f (a) + (z − a) f ′(a)dz = 0.

This shows that �����

∫
∂RN

f (z)dz
�����
≤ ε

δ 2

4n
.

If ε < m
δ 2 , then we get a contradiction. �

Corollary 6. The Cauchy–Goursat theorem remains true if we assume that f is continuous on U and
holomorphic outside a �nite subset S ⊂ U .
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3 The Cauchy–Goursat Theorem

Proof. Let M be an upper bound of | f | onU . As in the proof of the Cauchy–Goursat theorem, subdi-
vide R into 4m sub-rectangles each of which is 2n times smaller than R. Each point of S can belong to
at most 4 sub-rectangles. Thus, by the Cauchy–Goursat theorem, the integral of f on all but 4 × |S |
sub-rectangles is 0. Hence

�����

∫
∂R

f (z)dz
�����
≤ 4 × |S |M

δ

2n
.

This integral clearly goes to 0 as n → ∞. �

Theorem 7. Any holomorphic function in an open setU ⊂ C is automatically analytic inU .

Proof. Let a ∈ U . Let R be a rectangle inU such that a ∈ R̊. Let r > 0 be such that D (a, r ) ⊂ R and let
b ∈ D (a, r ). Let д : U → C be the function de�ned by

д(z) =



f (z )−f (b )
z−b z , b

f ′(z) z = 0.

Clearly, д ∈ O (U \ {b}) ∩ C (U ). By the previous corollary
∫
∂R д(z)dz = 0. Hence∫

∂R

f (z)

z − b
dz − f (b)2πi = 0,

and thus
f (b) =

1
2πi

∫
∂R

f (z)

z − b
dz.

For any z ∈ ∂R, |b−a |
|z−a | ≤

|b−a |
r < 1. Thus

∞∑
n=0

(b − a)n

(z − a)n+1 =
1

z − a
·

1
1 − b−a

z−a

=
1

z − b
,

and this convergence is uniform for z ∈ R. Thus

f (b) =
1

2πi

∫
∂R

f (z)

z − b
=

∞∑
n=0

(b − a)n
∫
∂P

f (z)

(z − a)n+1
dz

2πi
.

This proves that f can be expanded in a power series near a proving that f is analytic. �

3.1 Morera’s theorem

Theorem 8. Let f : U → C be a continuous function such that for each rectangle R ⊂ U , we have∫
∂R f (z)dz = 0. Then f is analytic onU .

Proof. There is no harm in assuming that U is an open disk centred at a. For each z ∈ U , let F (z) be
the integral of f along a path from a to z composed of a horizontal segment followed by a vertical
segment. By hypothesis, F (z) can also be obtained by integrating f along the path that �rst consists
of a vertical segment and then a horizontal segment. The proof that F is a primitive of f now follows
along the same as lines as the proof the second form of the fundamental theorem of calculus and is
left to the reader. �
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4 The principle of analytic continuation

3.2 Cauchy’s integral formula for disk and applications

Theorem 9. Let f : U → C be holomorphic and D (a, r ) ⊂ U . For b ∈ D (a, r ), we have

f (b) =

∫
C (a,r )

f (z)

z − b

dz

2πi
,

where C (a, r ) = ∂D (a, r ) with positive orientation. More generally,

f (n) (b)

n!
=

∫
C (a,r )

f (z)

(z − b)n+1
dz

2πi

Furthermore, the Taylor series expansion of f around a converges unifomly on compact subsets of D (a, r )
to f .

Proof. The proof is exactly same as that for the rectangle. �

4 The principle of analytic continuation

We will now study some of the aspects of holomorphic functions that arise out of complex-analyticity.
One main distinguishing feature of analytic functions as opposed to C∞ functions is that analytic func-
tions are more rigid. This is made precise in this section. We �rst de�ne the order of a holomorphic
function at a point.

Lemma 10. Let U ⊂ C be a domain, a ∈ U and let f ∈ O (U ). Then the following conditions are all
equivalent:

1. f (n) (a) = 0 ∀n.
2. f (z) = 0 in a neighborhood of a.
3. f ≡ 0 onU .

Proof. Obviously (c ) =⇒ (b), (b) =⇒ a. It su�ces to prove that (a) =⇒ (c ). To do this we use a
connectedness argument. Let

A := {z ∈ U : f (z) = 0 in some neighborhood of z}.

Clearly, A is an open set. Let zm ∈ A be such that zm → z ∈ U . Then f (n) (zm ) = 0 by the de�nition
of A and consequently by passing to limits, f (n) (z) = 0. But this means that the Taylor expansion of
f centered at 0 has all coe�cients 0 and this means that f vanishes on some disk around z and hence
z ∈ A. This proves that A is closed in U and consequently A = U proving that (a) =⇒ (c ). �

De�nition 11. A discrete subset E ⊂ U is a closed subset ofU such that each point of E is an isolated
point.

Theorem 12 (The principle of analytic continuation). If f ∈ O (U ) then either the zeros set of f

Z ( f ) := {z ∈ U : f (z) = 0}

is discrete or f is constant.
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5 The maximum principle and open mapping theorem

Proof. The set Z ( f ) is clearly closed inU . Let a ∈ Z ( f ). Assume that f is non-constant. Then, by the
previous lemma, the Taylor series of f around a is of the following form:

f (z) =
∞∑
n=k

cn (z − a)
n ,

where k > 0 and ck , 0. It is straightforward to see that the power series
∑∞

n=0 cn+k (z−a)
n converges

in a disk around 0. Moreover, as ck , 0, it follows that the function д de�ned by this series is nowhere
zero in a small disk around a. As f (z) = (z − a)kд(z) in a small disk around a, it follows that a is an
isolated point of Z ( f ). �

5 The maximum principle and open mapping theorem

Recall that the Laplacian 4u := ∂2u
∂x 2 +

∂2u
∂y2 for u ∈ C2 (U ).

Lemma 13. If u : U → R is C2-smooth. Suppose 4u ≥ 0 on U . Let G b U be a open (not necessarily
connected) set. Then

sup
w ∈G

u (w ) ≤ sup
w ∈∂G

u (w ).

Remark 14. The notation G b U (read G is relatively compact in U ) means that G ⊂ U and G is
compact. Here the closure is taken in C.

Proof. First assume that 4u > 0 on G. The if z0 ∈ G such that z0 is a point of maximum for u in G.
Then

4u (z0) ≤ 0,

which is not possible. The lemma is prove with the additional hypothesis that 4u > 0 on G. If not,
consider the function

4uε := u + ε |z |2.

Then 4uε > ε and therefore from the previous argument

sup
w ∈G

uε (w ) ≤ sup
w ∈∂G

uε (w ).

The lemma follows by letting ε → 0. �

Theorem 15 (Maximum principle weak form). Let f : U → C is holomorphic and G b U . Then

sup
w ∈G
| f (w ) | ≤ sup

w ∈∂G
| f (w ) |.

Proof. Just compute 4| f |2. �

Theorem 16 (The open mapping theorem). Let f ∈ O (U ). Then either f is a constant or else it is an
open map.
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Proof. Let a ∈ U . We may assume that f (a) = 0 and show that for small enough r > 0 that f (D (a, r ))
has 0 as an interior point unless f is constant. If f is non-constant, then for some small disk D (a, r )
we have f , 0 on D∗ (a, r ) (by principle of analytic continuation). Let δ be the minimum value of | f |
on the circle of radius r centered at a. Suppose w < f (D (a, r )), then we claim that |w | ≥ 1/2δ . We
may assume that |w | < δ . Then the function

д(z) =
1

f (z) −w

is holomorphic on D (a, r ) and satis�es

1
|w |
= |д(a) | ≤ sup z ∈ ∂D (a, r ) |д(z) | ≤

1
δ − |w |

.

This means that |w | ≥ 1/2δ as claimed and we are done. �

Theorem 17 (The maximum principle strong form). Let f ∈ O (U ) whereU is a bounded domain. Let

M := {lim sup
z→ζ

| f (z) | : ζ ∈ ∂U }.

Then either f is constant or | f | < M .

Proof. We may assme that f is an open map. It su�ces to show that | f | ≤ M + ε for each ε > 0. This
would show that | f | ≤ M and we get the desired inequality that | f | < M because f is an open map.
For each ζ ∈ ∂U , using the de�nition of M , we can �nd a disk Dζ such that | f | < M + ε on Dζ ∩U .
Call the union of these disks D. Then clearly K := U \ D is a compact set. Let G ⊂ U be an open set
with K ⊂ G. Then ∂G ⊂ D ∩U . The maximum principle gives us that | f | ≤ M + ε onG and hence on
U . The result follows. �
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