MA5360 – Assignment 3 Due Date – NO DUE DATE!

Jaikrishnan Janardhanan

complexanalysis18@gmail.com

Indian Institute of Technology Madras https://bit.ly/ma5360

- 1. Show that the function $\cos z$ maps the strip $B = \{z : 0 < \text{Re}z < \pi\}$ onto the domain $U = \mathbb{C} \setminus \{x \in \mathbb{R} : |x| \ge 1\}$ conformally and injectively. Find an expression for its inverse in terms of the logarithm.
- 2. In this exercise, you will work out the basics of complex powers. Given two complex numbers z, w with $z \neq 0$, we define the complex power denoted by $z^{[w]}$ to be the set

$$\{\exp wx : x \in \mathrm{Log}z\}.$$

- a) Briefly sketch a motivation for the above definition.
- b) What is $z^{[0]}$?
- c) Compute $i^{[i]}$.
- d) If w is an integer show that $z^{[w]}$ is a singleton set comprising of the complex number z^w .
- e) If w = p/q is a rational show that the set z^w comprises the set of *q*-th roots of z^p .
- f) In all other cases show that z^w is a countably infinite set.
- g) Define $e := \exp(1)$ (which is real). Show that $\exp(z) \in e^{[z]}$ and thus we may henceforth use the notation e^{z} !
- h) Formulate and understand what it means for a function f to be a continuous branch of z^{w} .
- i) Is a continous branch of z^w automatically holomorphic?
- 3. If you have not already done so, write down an expression for the Laplacian in terms of the derivatives $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ derivatives.
- 4. Consider the function f defined on \mathbb{R} by

$$f(x) := \begin{cases} \exp(-1/x^2) & \text{if } x > 0 \\ 0 & \text{if } x \le 0. \end{cases}$$

Prove that $f \in C^{\infty}(\mathbb{R})$ but its Taylor series at the origin does not converge to f in any open interval containing 0.

- 5. Let *f* be holomorphic in a neighborhood of a closed rectangle *R* except for finitely many points $z_0, \ldots, z_n \in int(R)$ and suppose that $\lim_{z \to z_j} (z z_j) f(z) = 0$. Prove that $\int_R f(z) dz = 0$
- 6. Compute the integral

$$\int_0^{2\pi} e^{\cos\theta} \sin(n\theta - \sin\theta) d\theta$$

7. Prove that if f is a continuous function on an open convex set U and holomorphic on $U \setminus \{z_0\}, z_0 \in U$, then $\int_V f(z)dz = 0$ for any closed contour $\gamma : [a, b] \to U$.

8. Let γ be a closed path in \mathbb{C} that misses 0. Show directly that the value of

$$\frac{1}{2\pi i}\int_{\gamma}\frac{dz}{z-z_0}$$

is an integer.

- 9. Let $f \in \mathscr{O}(\mathbb{D}) \cap C^0(\overline{\mathbb{D}})$ and suppose vanishes on some arc on the unit circle. Conclude that $f \equiv 0$.
- 10. Let U be a bounded domain and suppose $f : U \to U$ is holomorphic and satisfies f(a) = a and f'(a) = 1 for some $a \in U$. Show that f is linear.
- 11. Show that

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$

- 12. Show that any two primitives *F* and *G* of a function $f \in \mathcal{O}(U)$ differ by a constant.
- 13. Let $L \subset \mathbb{C}$ be any line. Suppose $f \in \mathcal{O}(U \setminus L)$. Prove that $f \in \mathcal{O}(U)$.
- 14. Let f be an entire function with the property that for some polynomial p(z), we have

 $|f(z)| \le |p(z)|$

for all $|z| > R, R \in \mathbb{R}$. What can you say about *f*?