MA5360 – Assignment 1 Due Date – February 5, 2018

Jaikrishnan Janardhanan complexanalysis18@gmail.com Indian Institute of Technology Madras https://bit.ly/ma5360

- 1. Prove the reverse triangle inequality: $|w \pm z| \ge ||w| |z||$ for all $z, w \in \mathbb{C}$ with equality iff either z or w is real multiple of the other.
- 2. For z = x + iy, show that

$$|z| \le |x| + |y| \le \sqrt{2|z|}.$$

Also show that the constant $\sqrt{2}$ cannot, in general, be replaced by a smaller constant.

- 3. Let $T : \mathbb{C} \to \mathbb{C}$ be of the form $\lambda z + \mu \overline{z}$. Show that
 - a) *T* is bijective iff $\lambda \overline{\lambda} \neq \mu \overline{\mu}$.
 - b) $|T(z)| = |z| \ \forall z \in \mathbb{C} \text{ iff } |\lambda + \mu| = 1 \text{ and } \lambda \mu = 0.$
- 4. For n > 1, let $c_0 > c_1 > \cdots > c_n > 0$ be real numbers. Let

$$p(z) := c_0 + c_1 z + \dots + c_n z^n.$$

Show that every root of *p* must have modulus greater than 1.

- 5. At what points of \mathbb{C} is the function $f(z) = z(z + \overline{z}^2) \mathbb{C}$ -differentiable?
- 6. Consider the function $f : \mathbb{C} \to \mathbb{C}$ defined by $f(z) := \sqrt{|x||y|}$. Show that f satisfies the Cauchy–Riemann equations at 0. Is $f \mathbb{C}$ -differentiable at 0.
- 7. Let *U* be a domain and let f = u + iv be holomorphic in *U*. Suppose for some $v_1 : U \to \mathbb{R}$, we have that $u + iv_1$ is also holomorphic in *U*. What is the relationship between v and v_1 ?
- 8. Let $f: U \to \mathbb{C}$ be real-differentiable in U and suppose

$$\lim_{h \to 0} \left| \frac{f(a+h) - f(a)}{h} \right|$$

exists for the point $a \in U$. Prove that either f or \overline{f} is \mathbb{C} -differentiable at a.

- 9. Show the following identity for the Wirtinger derivatives ∂ and $\overline{\partial}: \overline{\partial f} = \overline{\overline{\partial f}}, \overline{\partial} \overline{f} = \overline{\partial f}$.
- 10. Write down an expression for the Laplacian of a real-differentiable function $f : U \to \mathbb{C}$ in terms ∂ and $\overline{\partial}$. Do the same for the Jacobian of f. If f is holomorphic in U, what can you tell about the Jacobian of f?
- 11. Formulate and prove a version of the chain rule for the Wirtinger derivatives.
- 12. Let $f: U \to \mathbb{C}$ be holomorphic. Show that f is constant if one of |f|, Ref or Imf is constant.